YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Management in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Time-Series Analysis for Forecasting Asphalt-Cement Price

    Source: Journal of Management in Engineering:;2017:;Volume ( 033 ):;issue: 001
    Author:
    M. Ilbeigi
    ,
    B. Ashuri
    ,
    A. Joukar
    DOI: 10.1061/(ASCE)ME.1943-5479.0000477
    Publisher: American Society of Civil Engineers
    Abstract: Variations in the price of asphalt cement have become a serious challenge for Departments of Transportation in proper budgeting of transportation projects. This issue has also pressed contractors in their efforts to develop appropriate cost estimates for transportation projects. Although the price of asphalt cement increases over the long term, it is subject to significant short-term variations. In the current state of practice, the following approaches have been utilized to predict the future price of asphalt cement: (1) adding a fixed percentage of the estimated total cost of asphalt cement to escalate the price of asphalt cement (i.e., adding a risk premium); (2) inflating the estimated cost of asphalt cement to the expected midpoint of construction period to estimate the total cost of asphalt cement; and (3) conducting Monte Carlo simulation analysis to characterize uncertainty about future price of asphalt cement. None of these methods consider autocorrelation in the historical records of asphalt cement price. This paper departs from the existing body of knowledge and challenges the lack of proper treatment of short-term variations in predicting asphalt cement price. The research objectives of this paper are to: (1) identify and characterize variations observed in actual prices of asphalt cement over time; and (2) utilize this knowledge to create time-series forecasting models for asphalt cement price and examine whether and how time-series forecasting models can predict future prices of asphalt cement with higher accuracy compared to the existing approaches. Based on the identified time series characteristics, four univariate time series forecasting models, namely Holt Exponential Smoothing (ES), Holt-Winters ES, Autoregressive Integrated Moving Average (ARIMA), and seasonal ARIMA, are created to take into account the short-term variation of asphalt cement price in forecasting its future values. The forecasting results show that all four time series models can predict future prices of asphalt cement with higher accuracy than the existing methods, such as Monte Carlo simulation. Among the four models, the ARIMA and Holt ES models are the most accurate forecasting models with errors less than 2%. This study can help both owners and contractors improve budgeting process, prepare more-accurate cost estimates, and reduce the risk of asphalt cement price variations in transportation projects.
    • Download: (955.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Time-Series Analysis for Forecasting Asphalt-Cement Price

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4238289
    Collections
    • Journal of Management in Engineering

    Show full item record

    contributor authorM. Ilbeigi
    contributor authorB. Ashuri
    contributor authorA. Joukar
    date accessioned2017-12-16T09:05:10Z
    date available2017-12-16T09:05:10Z
    date issued2017
    identifier other%28ASCE%29ME.1943-5479.0000477.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4238289
    description abstractVariations in the price of asphalt cement have become a serious challenge for Departments of Transportation in proper budgeting of transportation projects. This issue has also pressed contractors in their efforts to develop appropriate cost estimates for transportation projects. Although the price of asphalt cement increases over the long term, it is subject to significant short-term variations. In the current state of practice, the following approaches have been utilized to predict the future price of asphalt cement: (1) adding a fixed percentage of the estimated total cost of asphalt cement to escalate the price of asphalt cement (i.e., adding a risk premium); (2) inflating the estimated cost of asphalt cement to the expected midpoint of construction period to estimate the total cost of asphalt cement; and (3) conducting Monte Carlo simulation analysis to characterize uncertainty about future price of asphalt cement. None of these methods consider autocorrelation in the historical records of asphalt cement price. This paper departs from the existing body of knowledge and challenges the lack of proper treatment of short-term variations in predicting asphalt cement price. The research objectives of this paper are to: (1) identify and characterize variations observed in actual prices of asphalt cement over time; and (2) utilize this knowledge to create time-series forecasting models for asphalt cement price and examine whether and how time-series forecasting models can predict future prices of asphalt cement with higher accuracy compared to the existing approaches. Based on the identified time series characteristics, four univariate time series forecasting models, namely Holt Exponential Smoothing (ES), Holt-Winters ES, Autoregressive Integrated Moving Average (ARIMA), and seasonal ARIMA, are created to take into account the short-term variation of asphalt cement price in forecasting its future values. The forecasting results show that all four time series models can predict future prices of asphalt cement with higher accuracy than the existing methods, such as Monte Carlo simulation. Among the four models, the ARIMA and Holt ES models are the most accurate forecasting models with errors less than 2%. This study can help both owners and contractors improve budgeting process, prepare more-accurate cost estimates, and reduce the risk of asphalt cement price variations in transportation projects.
    publisherAmerican Society of Civil Engineers
    titleTime-Series Analysis for Forecasting Asphalt-Cement Price
    typeJournal Paper
    journal volume33
    journal issue1
    journal titleJournal of Management in Engineering
    identifier doi10.1061/(ASCE)ME.1943-5479.0000477
    treeJournal of Management in Engineering:;2017:;Volume ( 033 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian