YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Material Properties of Crushable Concrete for Use in Vehicle Antiram Barriers

    Source: Journal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 004
    Author:
    Keith Doyle
    ,
    Lynsey Reese
    ,
    Aleksandra Radlińska
    ,
    Tong Qiu
    DOI: 10.1061/(ASCE)MT.1943-5533.0001780
    Publisher: American Society of Civil Engineers
    Abstract: With raised national security awareness because of terroristic threats, more focus recently has been placed on barrier and safety systems that can prevent the loss of life and structural damage as a result of vehicular impact and blast loading. One potential method for dissipating some of a vehicle’s high kinetic energy is to use crushable concrete in the barrier design. In this study, multiple crushable concrete mixtures containing partial and full replacement of aggregate by expanded polystyrene spheres were tested in unconfined and confined compression tests to evaluate their capacity of energy dissipation. Unconfined testing showed high ductility of polystyrene concrete, but the samples ultimately failed in shear. More efficient use of the crushable concrete was encapsulating the specimens. Confined compression tests showed much larger energy absorption capacity of all mixtures studied. Changes in the water-to-cement ratio (w/c) and loading rate had minimal effect on energy absorption and strength. However, increasing the amount of polystyrene replaced caused an increase in deformability and decreased the strength capacity. Additionally, dynamic compression tests were conducted on confined samples. Image analysis of the test samples showed that with an increase in strain values, the compression of the polystyrene increased. As a result, the relative volume of concrete increased with a decrease in the relative volume of voids.
    • Download: (1.876Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Material Properties of Crushable Concrete for Use in Vehicle Antiram Barriers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237876
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorKeith Doyle
    contributor authorLynsey Reese
    contributor authorAleksandra Radlińska
    contributor authorTong Qiu
    date accessioned2017-12-16T09:02:50Z
    date available2017-12-16T09:02:50Z
    date issued2017
    identifier other%28ASCE%29MT.1943-5533.0001780.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237876
    description abstractWith raised national security awareness because of terroristic threats, more focus recently has been placed on barrier and safety systems that can prevent the loss of life and structural damage as a result of vehicular impact and blast loading. One potential method for dissipating some of a vehicle’s high kinetic energy is to use crushable concrete in the barrier design. In this study, multiple crushable concrete mixtures containing partial and full replacement of aggregate by expanded polystyrene spheres were tested in unconfined and confined compression tests to evaluate their capacity of energy dissipation. Unconfined testing showed high ductility of polystyrene concrete, but the samples ultimately failed in shear. More efficient use of the crushable concrete was encapsulating the specimens. Confined compression tests showed much larger energy absorption capacity of all mixtures studied. Changes in the water-to-cement ratio (w/c) and loading rate had minimal effect on energy absorption and strength. However, increasing the amount of polystyrene replaced caused an increase in deformability and decreased the strength capacity. Additionally, dynamic compression tests were conducted on confined samples. Image analysis of the test samples showed that with an increase in strain values, the compression of the polystyrene increased. As a result, the relative volume of concrete increased with a decrease in the relative volume of voids.
    publisherAmerican Society of Civil Engineers
    titleMaterial Properties of Crushable Concrete for Use in Vehicle Antiram Barriers
    typeJournal Paper
    journal volume29
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0001780
    treeJournal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian