YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of a Performance-Based Approach to Design Asphalt-Treated Base Mixtures

    Source: Journal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 007
    Author:
    Louay N. Mohammad
    ,
    Munir Nazzal
    DOI: 10.1061/(ASCE)MT.1943-5533.0001884
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents the results of a comprehensive laboratory testing program that was conducted to develop a performance-based approach to design asphalt-treated base-course mixtures. Eight asphalt-treated base-course mixtures with different aggregate types were considered and evaluated in this study. The considered aggregates included four limestones, sandstone, granite, novaculite, and rhyolite. The laboratory testing program was conducted in two phases. The first phase, Phase I, was a screening phase that evaluated the physical and strength properties of the aggregates used. Furthermore, this phase examined the high-temperature and intermediate-temperature properties of asphalt-treated mixtures based on the results of the load-wheel tracking and indirect tensile strength tests, respectively. In Phase II, permeability and a suite of mechanistic tests were performed to further examine the behavior of the asphalt-treated mixtures that passed the Phase-I screening evaluation. The mechanistic tests performed in Phase II included dynamic modulus, flow number, semicircular bend, and dissipated creep strain energy tests. The results of the first phase showed that asphalt-treated base-course mixtures with porous limestone aggregates did not pass the screening criterion at intermediate or high temperatures. Among all asphalt-treated mixtures evaluated in Phase II, the mixture containing the novaculite aggregate exhibited the least rutting and fracture resistance. In addition, asphalt-treated base-course mixtures containing limestone aggregates showed the best laboratory performance and met the minimum criteria in all conducted tests for well-performing conventional base-course hot-mix asphalt (HMA) mixtures. The results of the study also indicated that the parameters characterizing the coarse and fine portions of aggregate gradation significantly affect the critical strain energy release rate of asphalt-treated mixtures. In addition, the results of the dissipated creep strain energy test exhibited good correlations with the aggregates’ absorption and the mixtures’ film thickness. Finally, the cost of asphalt-treated base-course mixtures evaluated in this study was approximately $7.20 per ton lower than that of conventional HMA base-course mixtures. This corresponded to about a 16% reduction in price.
    • Download: (715.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of a Performance-Based Approach to Design Asphalt-Treated Base Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237771
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorLouay N. Mohammad
    contributor authorMunir Nazzal
    date accessioned2017-12-16T09:02:26Z
    date available2017-12-16T09:02:26Z
    date issued2017
    identifier other%28ASCE%29MT.1943-5533.0001884.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237771
    description abstractThis paper presents the results of a comprehensive laboratory testing program that was conducted to develop a performance-based approach to design asphalt-treated base-course mixtures. Eight asphalt-treated base-course mixtures with different aggregate types were considered and evaluated in this study. The considered aggregates included four limestones, sandstone, granite, novaculite, and rhyolite. The laboratory testing program was conducted in two phases. The first phase, Phase I, was a screening phase that evaluated the physical and strength properties of the aggregates used. Furthermore, this phase examined the high-temperature and intermediate-temperature properties of asphalt-treated mixtures based on the results of the load-wheel tracking and indirect tensile strength tests, respectively. In Phase II, permeability and a suite of mechanistic tests were performed to further examine the behavior of the asphalt-treated mixtures that passed the Phase-I screening evaluation. The mechanistic tests performed in Phase II included dynamic modulus, flow number, semicircular bend, and dissipated creep strain energy tests. The results of the first phase showed that asphalt-treated base-course mixtures with porous limestone aggregates did not pass the screening criterion at intermediate or high temperatures. Among all asphalt-treated mixtures evaluated in Phase II, the mixture containing the novaculite aggregate exhibited the least rutting and fracture resistance. In addition, asphalt-treated base-course mixtures containing limestone aggregates showed the best laboratory performance and met the minimum criteria in all conducted tests for well-performing conventional base-course hot-mix asphalt (HMA) mixtures. The results of the study also indicated that the parameters characterizing the coarse and fine portions of aggregate gradation significantly affect the critical strain energy release rate of asphalt-treated mixtures. In addition, the results of the dissipated creep strain energy test exhibited good correlations with the aggregates’ absorption and the mixtures’ film thickness. Finally, the cost of asphalt-treated base-course mixtures evaluated in this study was approximately $7.20 per ton lower than that of conventional HMA base-course mixtures. This corresponded to about a 16% reduction in price.
    publisherAmerican Society of Civil Engineers
    titleEvaluation of a Performance-Based Approach to Design Asphalt-Treated Base Mixtures
    typeJournal Paper
    journal volume29
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0001884
    treeJournal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian