YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evolution of the Microstructure of Warm Mix Asphalt Binders with Aging in an Accelerated Weathering Tester

    Source: Journal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 010
    Author:
    Ilaria Menapace
    ,
    Eyad Masad
    DOI: 10.1061/(ASCE)MT.1943-5533.0001998
    Publisher: American Society of Civil Engineers
    Abstract: This study investigated the microstructural evolution of two binders, Pen 60/70 and PG 76-22, modified with two warm mix asphalt (WMA) additives, Advera (PQ Corporation, Malvern, Pennsylvania) and Sasobit (Sasol Wax, Sasolburg, South Africa), due to aging performed with an accelerated weathering tester. A new long-term aging protocol was utilized, which applies direct aging on the exposed surface of the binders. The aging protocol considers the effects of ultraviolet (UV) radiation (with alternation of UV and dark cycles), presence of oxygen, and temperature. After varying aging durations, different surface morphologies were detected using both optical photos and atomic force microscopy (AFM). New microstructures in the shape of rods, squares, spheres, ellipsoids, and beans and flower or leaf structures were observed on the aged surfaces. The observed microstructures are probably composed of the product of the oxidation and polymerization reactions occurring on the binder surface due to direct aging. The evolution of the microstructure due to direct aging in Advera modified binders was similar to that of the original binders, displaying flower or leaf structures after the longest aging durations. The microstructural evolution observed on the Sasobit modified binders differed from that of the original and Advera modified binders. The discrepancy is attributed to the dissimilar microstructure and chemical composition of the unaged surface, which reacts and forms compounds having different compositions and metastable configurations.
    • Download: (8.436Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evolution of the Microstructure of Warm Mix Asphalt Binders with Aging in an Accelerated Weathering Tester

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237653
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorIlaria Menapace
    contributor authorEyad Masad
    date accessioned2017-12-16T09:01:59Z
    date available2017-12-16T09:01:59Z
    date issued2017
    identifier other%28ASCE%29MT.1943-5533.0001998.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237653
    description abstractThis study investigated the microstructural evolution of two binders, Pen 60/70 and PG 76-22, modified with two warm mix asphalt (WMA) additives, Advera (PQ Corporation, Malvern, Pennsylvania) and Sasobit (Sasol Wax, Sasolburg, South Africa), due to aging performed with an accelerated weathering tester. A new long-term aging protocol was utilized, which applies direct aging on the exposed surface of the binders. The aging protocol considers the effects of ultraviolet (UV) radiation (with alternation of UV and dark cycles), presence of oxygen, and temperature. After varying aging durations, different surface morphologies were detected using both optical photos and atomic force microscopy (AFM). New microstructures in the shape of rods, squares, spheres, ellipsoids, and beans and flower or leaf structures were observed on the aged surfaces. The observed microstructures are probably composed of the product of the oxidation and polymerization reactions occurring on the binder surface due to direct aging. The evolution of the microstructure due to direct aging in Advera modified binders was similar to that of the original binders, displaying flower or leaf structures after the longest aging durations. The microstructural evolution observed on the Sasobit modified binders differed from that of the original and Advera modified binders. The discrepancy is attributed to the dissimilar microstructure and chemical composition of the unaged surface, which reacts and forms compounds having different compositions and metastable configurations.
    publisherAmerican Society of Civil Engineers
    titleEvolution of the Microstructure of Warm Mix Asphalt Binders with Aging in an Accelerated Weathering Tester
    typeJournal Paper
    journal volume29
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0001998
    treeJournal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian