YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of Geopolymer Synthesized with Class F Fly Ash and Low-Calcium Slag

    Source: Journal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 010
    Author:
    Rasoul Shadnia
    ,
    Lianyang Zhang
    DOI: 10.1061/(ASCE)MT.1943-5533.0002065
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents an experimental study on geopolymer synthesized with class F fly ash (FA) and low-calcium slag (SG). Geopolymer specimens were produced using FA and SG at different relative amounts (FA/SG=0/100, 25/75, 50/50, 75/25, and 100/0), NaOH solution at different concentrations (7.5, 10, and 15 M), various curing times (1, 2, 4, 7, 14, and 28 days) and curing temperatures [25 (ambient), 45, 60, 75, and 90°C]. The unit weight and uniaxial compressive strength (UCS) of the geopolymer specimens were measured. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD) were also performed to characterize the microstructure and phase composition of the geopolymer specimens. The results indicate that the incorporation of SG not only increases the UCS of the geopolymer specimens but also decreases the initial water content and, thus, the NaOH consumption at the same NaOH concentration required for geopolymer production. In addition, the inclusion of SG increases the unit weight of the geopolymer specimens, simply because SG has a much greater specific gravity than FA. The results also show that the strength of the FA/SG-based geopolymer develops rapidly, with a major portion of the UCS (approximately 70%) gained within only 2 days and no obvious strength gain after 7 days. The optimum curing temperature (the curing temperature at which the maximum UCS is obtained) at a FA/SG ratio of 50/50 is around 75°C. This research contributes to the knowledge of geopolymers produced from a combination of source materials and promotes the reuse of wastes through geopolymerization.
    • Download: (7.365Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of Geopolymer Synthesized with Class F Fly Ash and Low-Calcium Slag

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237607
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorRasoul Shadnia
    contributor authorLianyang Zhang
    date accessioned2017-12-16T09:01:48Z
    date available2017-12-16T09:01:48Z
    date issued2017
    identifier other%28ASCE%29MT.1943-5533.0002065.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237607
    description abstractThis paper presents an experimental study on geopolymer synthesized with class F fly ash (FA) and low-calcium slag (SG). Geopolymer specimens were produced using FA and SG at different relative amounts (FA/SG=0/100, 25/75, 50/50, 75/25, and 100/0), NaOH solution at different concentrations (7.5, 10, and 15 M), various curing times (1, 2, 4, 7, 14, and 28 days) and curing temperatures [25 (ambient), 45, 60, 75, and 90°C]. The unit weight and uniaxial compressive strength (UCS) of the geopolymer specimens were measured. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD) were also performed to characterize the microstructure and phase composition of the geopolymer specimens. The results indicate that the incorporation of SG not only increases the UCS of the geopolymer specimens but also decreases the initial water content and, thus, the NaOH consumption at the same NaOH concentration required for geopolymer production. In addition, the inclusion of SG increases the unit weight of the geopolymer specimens, simply because SG has a much greater specific gravity than FA. The results also show that the strength of the FA/SG-based geopolymer develops rapidly, with a major portion of the UCS (approximately 70%) gained within only 2 days and no obvious strength gain after 7 days. The optimum curing temperature (the curing temperature at which the maximum UCS is obtained) at a FA/SG ratio of 50/50 is around 75°C. This research contributes to the knowledge of geopolymers produced from a combination of source materials and promotes the reuse of wastes through geopolymerization.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study of Geopolymer Synthesized with Class F Fly Ash and Low-Calcium Slag
    typeJournal Paper
    journal volume29
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002065
    treeJournal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian