YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Properties of Nonfoaming Warm Mix Asphalt Mixtures at Lower Working Temperatures

    Source: Journal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 011
    Author:
    G. Shiva Kumar
    ,
    S. N. Suresha
    DOI: 10.1061/(ASCE)MT.1943-5533.0002071
    Publisher: American Society of Civil Engineers
    Abstract: Warm mix asphalt (WMA) is a green technology which has the potential to replace hot mix asphalt (HMA) because it reduces greenhouse gas emissions and energy consumption by lowering the temperature at which asphalt mixtures are produced and placed. During the design process, evaluation of the mix design and mechanical properties of WMA mixtures is necessary. Therefore, the ability to quantify compactability would be very useful. This paper presents details on the evaluation of asphalt mix design, workability, and mechanical properties of asphalt mixtures modified with nonfoaming WMA additives at lower working (mixing and compaction) temperatures. Further, it seeks to provide a wider gap between mixing and compaction temperatures to ensure that WMA mixtures are suitable for longer haul distances. Asphalt mix design properties were evaluated by the Superpave method for various design gyrations (Ndes), and workability properties were evaluated in terms of Superpave gyratory compactor (SGC) densification indices using the Bahia and locking point methods. Mechanical properties such as resistance to moisture-induced damage were evaluated by the tensile strength ratio (TSR) approach, rutting resistance was evaluated by a laboratory wheel tracking test using a wheel rut tester (WRT), and flexural fatigue characteristics were evaluated by four point bending using a repeated load testing (RLT) machine. The effects of nominal maximum aggregate size (NMAS), working temperature, and type of mixture on the properties of WMA mixtures were investigated. The experimental results were statistically analyzed to identify the major influencing factors and their significance.
    • Download: (2.082Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Properties of Nonfoaming Warm Mix Asphalt Mixtures at Lower Working Temperatures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237602
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorG. Shiva Kumar
    contributor authorS. N. Suresha
    date accessioned2017-12-16T09:01:47Z
    date available2017-12-16T09:01:47Z
    date issued2017
    identifier other%28ASCE%29MT.1943-5533.0002071.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237602
    description abstractWarm mix asphalt (WMA) is a green technology which has the potential to replace hot mix asphalt (HMA) because it reduces greenhouse gas emissions and energy consumption by lowering the temperature at which asphalt mixtures are produced and placed. During the design process, evaluation of the mix design and mechanical properties of WMA mixtures is necessary. Therefore, the ability to quantify compactability would be very useful. This paper presents details on the evaluation of asphalt mix design, workability, and mechanical properties of asphalt mixtures modified with nonfoaming WMA additives at lower working (mixing and compaction) temperatures. Further, it seeks to provide a wider gap between mixing and compaction temperatures to ensure that WMA mixtures are suitable for longer haul distances. Asphalt mix design properties were evaluated by the Superpave method for various design gyrations (Ndes), and workability properties were evaluated in terms of Superpave gyratory compactor (SGC) densification indices using the Bahia and locking point methods. Mechanical properties such as resistance to moisture-induced damage were evaluated by the tensile strength ratio (TSR) approach, rutting resistance was evaluated by a laboratory wheel tracking test using a wheel rut tester (WRT), and flexural fatigue characteristics were evaluated by four point bending using a repeated load testing (RLT) machine. The effects of nominal maximum aggregate size (NMAS), working temperature, and type of mixture on the properties of WMA mixtures were investigated. The experimental results were statistically analyzed to identify the major influencing factors and their significance.
    publisherAmerican Society of Civil Engineers
    titleEvaluation of Properties of Nonfoaming Warm Mix Asphalt Mixtures at Lower Working Temperatures
    typeJournal Paper
    journal volume29
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0002071
    treeJournal of Materials in Civil Engineering:;2017:;Volume ( 029 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian