YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiobjective Equivalent Static Wind Loads on Complex Tall Buildings Using Non-Gaussian Peak Factors

    Source: Journal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 011
    Author:
    Wenjuan Lou
    ,
    Ligang Zhang
    ,
    M. F. Huang
    ,
    Q. S. Li
    DOI: 10.1061/(ASCE)ST.1943-541X.0001277
    Publisher: American Society of Civil Engineers
    Abstract: Equivalent static wind loads (ESWLs) play an important role in the wind-resistant design of tall buildings. Traditionally, ESWLs of a tall building are derived based on the equivalence of the top deflection or the base force along the principal direction, which is easy to identify for a regular tall building. For flexible tall buildings with simple or complex shapes, wind-induced dynamic responses are three-dimensional, which often complicates the application of the ESWLs. Based on the time-domain dynamic analysis method, a new scheme is developed in this paper to model multiobjective equivalent static wind loads (M-ESWLs) on complex tall buildings. The possible non-Gaussian properties of wind-induced response processes have been taken into account in M-ESWLs by using non-Gaussian peak factors. Furthermore, a joint action reduction factor is carefully defined to reflect the partial correlations among multiple component responses. Finally, the new scheme is applied to a practical 43-story tall building with irregular geometric shapes to illustrate the application and effectiveness of the new method. In this work it was assumed that wind speeds do not depend on direction. Future research should include complementing this work by accounting for the effects of wind speed directionality.
    • Download: (1.854Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiobjective Equivalent Static Wind Loads on Complex Tall Buildings Using Non-Gaussian Peak Factors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237289
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorWenjuan Lou
    contributor authorLigang Zhang
    contributor authorM. F. Huang
    contributor authorQ. S. Li
    date accessioned2017-12-16T09:00:14Z
    date available2017-12-16T09:00:14Z
    date issued2015
    identifier other%28ASCE%29ST.1943-541X.0001277.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237289
    description abstractEquivalent static wind loads (ESWLs) play an important role in the wind-resistant design of tall buildings. Traditionally, ESWLs of a tall building are derived based on the equivalence of the top deflection or the base force along the principal direction, which is easy to identify for a regular tall building. For flexible tall buildings with simple or complex shapes, wind-induced dynamic responses are three-dimensional, which often complicates the application of the ESWLs. Based on the time-domain dynamic analysis method, a new scheme is developed in this paper to model multiobjective equivalent static wind loads (M-ESWLs) on complex tall buildings. The possible non-Gaussian properties of wind-induced response processes have been taken into account in M-ESWLs by using non-Gaussian peak factors. Furthermore, a joint action reduction factor is carefully defined to reflect the partial correlations among multiple component responses. Finally, the new scheme is applied to a practical 43-story tall building with irregular geometric shapes to illustrate the application and effectiveness of the new method. In this work it was assumed that wind speeds do not depend on direction. Future research should include complementing this work by accounting for the effects of wind speed directionality.
    publisherAmerican Society of Civil Engineers
    titleMultiobjective Equivalent Static Wind Loads on Complex Tall Buildings Using Non-Gaussian Peak Factors
    typeJournal Paper
    journal volume141
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001277
    treeJournal of Structural Engineering:;2015:;Volume ( 141 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian