YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Symmetry Method for the Mobility of Regular Structures Using Graph Products

    Source: Journal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 009
    Author:
    Yao Chen
    ,
    Jian Feng
    DOI: 10.1061/(ASCE)ST.1943-541X.0001512
    Publisher: American Society of Civil Engineers
    Abstract: Mobility analysis plays a key role in form finding and design of novel kinematically indeterminate structures. For large-scale or complex structures, it demands considerable computations and analyses, and, thus, efficient method is of great interest. Because many structures could be viewed as the product of two or three subgraphs, such structures are called regular structures and usually hold certain symmetries. Combining graph theory with group representation theory, this paper proposes an improved symmetry method for the mobility of kinematically indeterminate pin-jointed structures. The concepts of graph products are described and utilized, to simplify the conventional symmetry-extended mobility rule. Based on the definitions of the Cartesian product, the direct product, and the strong Cartesian product, the authors establish the representations of nodes and members for the graph products, respectively. The proposed method focuses on the simple subgraphs, which generate the entire structure, and computes the matrix representations of the nodes and members under each symmetry operation. Therefore, symmetry analysis of the entire structure is transformed into independent evaluations on the subgraphs. Mobility of symmetric structures with a large number of nodes and members is studied, and the static and kinematic indeterminacy of the structures is evaluated using the proposed method.
    • Download: (7.370Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Symmetry Method for the Mobility of Regular Structures Using Graph Products

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237239
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorYao Chen
    contributor authorJian Feng
    date accessioned2017-12-16T08:59:56Z
    date available2017-12-16T08:59:56Z
    date issued2016
    identifier other%28ASCE%29ST.1943-541X.0001512.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237239
    description abstractMobility analysis plays a key role in form finding and design of novel kinematically indeterminate structures. For large-scale or complex structures, it demands considerable computations and analyses, and, thus, efficient method is of great interest. Because many structures could be viewed as the product of two or three subgraphs, such structures are called regular structures and usually hold certain symmetries. Combining graph theory with group representation theory, this paper proposes an improved symmetry method for the mobility of kinematically indeterminate pin-jointed structures. The concepts of graph products are described and utilized, to simplify the conventional symmetry-extended mobility rule. Based on the definitions of the Cartesian product, the direct product, and the strong Cartesian product, the authors establish the representations of nodes and members for the graph products, respectively. The proposed method focuses on the simple subgraphs, which generate the entire structure, and computes the matrix representations of the nodes and members under each symmetry operation. Therefore, symmetry analysis of the entire structure is transformed into independent evaluations on the subgraphs. Mobility of symmetric structures with a large number of nodes and members is studied, and the static and kinematic indeterminacy of the structures is evaluated using the proposed method.
    publisherAmerican Society of Civil Engineers
    titleImproved Symmetry Method for the Mobility of Regular Structures Using Graph Products
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001512
    treeJournal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian