YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Studies of Lipped Channel Beams Subject to Web Crippling under Two-Flange Load Cases

    Source: Journal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 009
    Author:
    Lavan Sundararajah
    ,
    Mahen Mahendran
    ,
    Poologanathan Keerthan
    DOI: 10.1061/(ASCE)ST.1943-541X.0001523
    Publisher: American Society of Civil Engineers
    Abstract: Lipped channel beams (LCBs) are commonly used as flexural members such as floor joists and bearers in the construction industry. These thin-walled LCBs are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable research in this area, some recent studies have shown that the current web crippling design rules are unable to predict the test capacities under end-two-flange (ETF) and interior-two-flange (ITF) load conditions. In many instances, web crippling predictions by the available design standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 are inconsistent, i.e., unconservative in some cases, although they are conservative in other cases. Hence, experimental studies consisting of 36 tests were conducted in this research to assess the web crippling behavior and capacities of high-strength LCBs under two-flange load cases (ETF and ITF). Experimental results were then compared with the predictions from current design rules. Comparison of the ultimate web crippling capacities from tests showed that the design equations are very unconservative for LCB sections under the ETF load case and are conservative for the ITF load case. Hence, improved equations were proposed to determine the web crippling capacities of LCBs based on the experimental results from this study. Current design equations do not provide the direct strength method (DSM) provisions for web crippling. Hence, suitable design rules were also developed under the DSM format using the test results and buckling analyses using finite-element analyses.
    • Download: (12.05Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Studies of Lipped Channel Beams Subject to Web Crippling under Two-Flange Load Cases

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237228
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorLavan Sundararajah
    contributor authorMahen Mahendran
    contributor authorPoologanathan Keerthan
    date accessioned2017-12-16T08:59:53Z
    date available2017-12-16T08:59:53Z
    date issued2016
    identifier other%28ASCE%29ST.1943-541X.0001523.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237228
    description abstractLipped channel beams (LCBs) are commonly used as flexural members such as floor joists and bearers in the construction industry. These thin-walled LCBs are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable research in this area, some recent studies have shown that the current web crippling design rules are unable to predict the test capacities under end-two-flange (ETF) and interior-two-flange (ITF) load conditions. In many instances, web crippling predictions by the available design standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 are inconsistent, i.e., unconservative in some cases, although they are conservative in other cases. Hence, experimental studies consisting of 36 tests were conducted in this research to assess the web crippling behavior and capacities of high-strength LCBs under two-flange load cases (ETF and ITF). Experimental results were then compared with the predictions from current design rules. Comparison of the ultimate web crippling capacities from tests showed that the design equations are very unconservative for LCB sections under the ETF load case and are conservative for the ITF load case. Hence, improved equations were proposed to determine the web crippling capacities of LCBs based on the experimental results from this study. Current design equations do not provide the direct strength method (DSM) provisions for web crippling. Hence, suitable design rules were also developed under the DSM format using the test results and buckling analyses using finite-element analyses.
    publisherAmerican Society of Civil Engineers
    titleExperimental Studies of Lipped Channel Beams Subject to Web Crippling under Two-Flange Load Cases
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001523
    treeJournal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian