YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Performance and Response of Seismically Isolated Curved Steel I-Girder Bridge

    Source: Journal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 012
    Author:
    Eric V. Monzon
    ,
    Ian G. Buckle
    ,
    Ahmad M. Itani
    DOI: 10.1061/(ASCE)ST.1943-541X.0001594
    Publisher: American Society of Civil Engineers
    Abstract: A 0.4-scale model of a three-span, seismically isolated, curved steel I-girder bridge was tested on multiple shake tables. The isolation system consisted of 12 lead-rubber isolators. The bridge is highly curved with total subtended angle equal to 104° (1.8 radians). The objectives of this study were: (1) investigate the effect of curvature on the seismic response of an isolated bridge, (2) evaluate the performance of reinforced concrete (R/C) columns during the design-level earthquake using seismic isolation, and (3) determine the failure limit states of an isolated bridge under extreme shaking. It was found that the horizontal curvature had little effect on the response of the isolators but it did cause asymmetry in the seismic response resulting in higher lateral displacements in the abutment isolators. Elastic performance was achieved in the R/C columns at the design earthquake level, with no concrete spalling in potential plastic hinge zones and only minor surface cracking. Essentially elastic behavior of these columns was observed even at earthquake levels equal to three times the design. Under large earthquake loads, the limit state was found to be excessive displacements in the isolators. Adequate vertical load capacity was maintained even at displacements exceeding the isolator diameter, when they are unstable by first-order theory. Isolator instability at an abutment and a pier did occur at three times the design earthquake, where the isolator shear strain was up to 400%. However, this instability did not cause bridge collapse because the isolators at other supports remained stable and the columns were elastic.
    • Download: (17.52Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Performance and Response of Seismically Isolated Curved Steel I-Girder Bridge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237163
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorEric V. Monzon
    contributor authorIan G. Buckle
    contributor authorAhmad M. Itani
    date accessioned2017-12-16T08:59:31Z
    date available2017-12-16T08:59:31Z
    date issued2016
    identifier other%28ASCE%29ST.1943-541X.0001594.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237163
    description abstractA 0.4-scale model of a three-span, seismically isolated, curved steel I-girder bridge was tested on multiple shake tables. The isolation system consisted of 12 lead-rubber isolators. The bridge is highly curved with total subtended angle equal to 104° (1.8 radians). The objectives of this study were: (1) investigate the effect of curvature on the seismic response of an isolated bridge, (2) evaluate the performance of reinforced concrete (R/C) columns during the design-level earthquake using seismic isolation, and (3) determine the failure limit states of an isolated bridge under extreme shaking. It was found that the horizontal curvature had little effect on the response of the isolators but it did cause asymmetry in the seismic response resulting in higher lateral displacements in the abutment isolators. Elastic performance was achieved in the R/C columns at the design earthquake level, with no concrete spalling in potential plastic hinge zones and only minor surface cracking. Essentially elastic behavior of these columns was observed even at earthquake levels equal to three times the design. Under large earthquake loads, the limit state was found to be excessive displacements in the isolators. Adequate vertical load capacity was maintained even at displacements exceeding the isolator diameter, when they are unstable by first-order theory. Isolator instability at an abutment and a pier did occur at three times the design earthquake, where the isolator shear strain was up to 400%. However, this instability did not cause bridge collapse because the isolators at other supports remained stable and the columns were elastic.
    publisherAmerican Society of Civil Engineers
    titleSeismic Performance and Response of Seismically Isolated Curved Steel I-Girder Bridge
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001594
    treeJournal of Structural Engineering:;2016:;Volume ( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian