YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of a Novel Integrated Strengthening and Sensing Methodology for Steel Structures Using CNT-Based Composites

    Source: Journal of Structural Engineering:;2017:;Volume ( 143 ):;issue: 004
    Author:
    Shafique Ahmed
    ,
    Sagar Doshi
    ,
    Thomas Schumacher
    ,
    Erik T. Thostenson
    ,
    Jennifer McConnell
    DOI: 10.1061/(ASCE)ST.1943-541X.0001697
    Publisher: American Society of Civil Engineers
    Abstract: Strengthening of deteriorating structural members by fiber-reinforced polymers (FRPs) is an increasingly common and validated technique; however, concerns over means to evaluate the long-term durability of these retrofits exist. This paper explores a novel approach to overcome this concern through the use of a novel self-sensing composite material. Specifically, the objective of this paper is to provide a proof of concept for an integrated strengthening and sensing methodology for structural steel members achieved via infusing more-traditional composites with carbon nanotubes (CNTs). To assess the strengthening and sensing capabilities of the CNT-based composite, a set of unidirectional tensile tests were conducted. The experimental results show stiffness increases and strain reductions due to the application of the CNT-based sensing composites that were in close agreement with both analytical and finite-element models. The sensing aspect was also validated by a corresponding linear change in resistance of the CNT-based sensor with increasing load up to the point at which debonding of the adhesive layer occurred. The nanotube sensing layer is able to capture the strain in the member as well as the onset and extension of interfacial debonding.
    • Download: (1.249Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of a Novel Integrated Strengthening and Sensing Methodology for Steel Structures Using CNT-Based Composites

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237068
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorShafique Ahmed
    contributor authorSagar Doshi
    contributor authorThomas Schumacher
    contributor authorErik T. Thostenson
    contributor authorJennifer McConnell
    date accessioned2017-12-16T08:58:54Z
    date available2017-12-16T08:58:54Z
    date issued2017
    identifier other%28ASCE%29ST.1943-541X.0001697.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237068
    description abstractStrengthening of deteriorating structural members by fiber-reinforced polymers (FRPs) is an increasingly common and validated technique; however, concerns over means to evaluate the long-term durability of these retrofits exist. This paper explores a novel approach to overcome this concern through the use of a novel self-sensing composite material. Specifically, the objective of this paper is to provide a proof of concept for an integrated strengthening and sensing methodology for structural steel members achieved via infusing more-traditional composites with carbon nanotubes (CNTs). To assess the strengthening and sensing capabilities of the CNT-based composite, a set of unidirectional tensile tests were conducted. The experimental results show stiffness increases and strain reductions due to the application of the CNT-based sensing composites that were in close agreement with both analytical and finite-element models. The sensing aspect was also validated by a corresponding linear change in resistance of the CNT-based sensor with increasing load up to the point at which debonding of the adhesive layer occurred. The nanotube sensing layer is able to capture the strain in the member as well as the onset and extension of interfacial debonding.
    publisherAmerican Society of Civil Engineers
    titleDevelopment of a Novel Integrated Strengthening and Sensing Methodology for Steel Structures Using CNT-Based Composites
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001697
    treeJournal of Structural Engineering:;2017:;Volume ( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian