YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Resistance and Available Ductility of Steel-Plate Composite Walls in One-Way Bending

    Source: Journal of Structural Engineering:;2017:;Volume ( 143 ):;issue: 004
    Author:
    Jakob C. Bruhl
    ,
    Amit H. Varma
    DOI: 10.1061/(ASCE)ST.1943-541X.0001714
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents the results of an experimental program in which eight one-third-scale steel-plate composite (SC) wall sections were tested in four-point bending to ultimate failure (tension faceplate rupture). All specimens had the same global dimensions (102×279×1626  mm) but varied design parameters: different faceplate thickness resulting in 3.5–5.6% flexural reinforcement and slenderness ratios from 17.9 to 29.0; steel faceplate strength ranged from 400 to 700 MPa; and different tie-bar diameters and spacing resulted in shear reinforcement ratios between 0.37 and 1.23%. The experimental results include the elastic stiffness and yield moment, postyield behavior up to ultimate failure, fundamental moment-curvature behavior, complete load-displacement response, and deformation and curvature ductility for all eight specimens. Equations from existing design specifications for SC walls accurately estimated cracked-transformed (elastic) stiffness and the yield moment of the scaled wall sections. The ductility of the specimens is related directly to the faceplate material ductility and net section loss due to holes in the faceplates through which tie bars were installed.
    • Download: (1.457Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Resistance and Available Ductility of Steel-Plate Composite Walls in One-Way Bending

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4237052
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorJakob C. Bruhl
    contributor authorAmit H. Varma
    date accessioned2017-12-16T08:58:50Z
    date available2017-12-16T08:58:50Z
    date issued2017
    identifier other%28ASCE%29ST.1943-541X.0001714.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4237052
    description abstractThis paper presents the results of an experimental program in which eight one-third-scale steel-plate composite (SC) wall sections were tested in four-point bending to ultimate failure (tension faceplate rupture). All specimens had the same global dimensions (102×279×1626  mm) but varied design parameters: different faceplate thickness resulting in 3.5–5.6% flexural reinforcement and slenderness ratios from 17.9 to 29.0; steel faceplate strength ranged from 400 to 700 MPa; and different tie-bar diameters and spacing resulted in shear reinforcement ratios between 0.37 and 1.23%. The experimental results include the elastic stiffness and yield moment, postyield behavior up to ultimate failure, fundamental moment-curvature behavior, complete load-displacement response, and deformation and curvature ductility for all eight specimens. Equations from existing design specifications for SC walls accurately estimated cracked-transformed (elastic) stiffness and the yield moment of the scaled wall sections. The ductility of the specimens is related directly to the faceplate material ductility and net section loss due to holes in the faceplates through which tie bars were installed.
    publisherAmerican Society of Civil Engineers
    titleExperimental Resistance and Available Ductility of Steel-Plate Composite Walls in One-Way Bending
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001714
    treeJournal of Structural Engineering:;2017:;Volume ( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian