Show simple item record

contributor authorNelson, George J.
contributor authorvan Zandt, Zachary K.
contributor authorJibhakate, Piyush D.
date accessioned2017-11-25T07:20:57Z
date available2017-11-25T07:20:57Z
date copyright2016/10/20
date issued2016
identifier issn2381-6872
identifier otherjeecs_013_03_030802.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236774
description abstractThe lithium-ion battery (LIB) has emerged as a key energy storage device for a wide range of applications, from consumer electronics to transportation. While LIBs have made key advancements in these areas, limitations remain for Li-ion batteries with respect to affordability, performance, and reliability. These challenges have encouraged the exploration for more advanced materials and novel chemistries to mitigate these limitations. The continued development of Li-ion and other advanced batteries is an inherently multiscale problem that couples electrochemistry, transport phenomena, mechanics, microstructural morphology, and device architecture. Observing the internal structure of batteries, both ex situ and during operation, provides a critical capability for further advancement of energy storage technology. X-ray imaging has been implemented to provide further insight into the mechanisms governing Li-ion batteries through several 2D and 3D techniques. Ex situ imaging has yielded microstructural data from both anode and cathode materials, providing insight into mesoscale structure and composition. Furthermore, since X-ray imaging is a nondestructive process studies have been conducted in situ and in operando to observe the mechanisms of operation as they occur. Data obtained with these methods has also been integrated into multiphysics models to predict and analyze electrode behavior. The following paper provides a brief review of X-ray imaging work related to Li-ion batteries and the opportunities these methods provide for the direct observation and analysis of the multiphysics behavior of battery materials.
publisherThe American Society of Mechanical Engineers (ASME)
titleDirect X-Ray Imaging as a Tool for Understanding Multiphysics Phenomena in Energy Storage
typeJournal Paper
journal volume13
journal issue3
journal titleJournal of Electrochemical Energy Conversion and Storage
identifier doi10.1115/1.4034415
journal fristpage30802
journal lastpage030802-5
treeJournal of Electrochemical Energy Conversion and Storage:;2016:;volume( 013 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record