Show simple item record

contributor authorQu, Jinhong
contributor authorTeeple, Clark B.
contributor authorOldham, Kenn R.
date accessioned2017-11-25T07:20:10Z
date available2017-11-25T07:20:10Z
date copyright2017/24/4
date issued2017
identifier issn1048-9002
identifier othervib_139_03_031013.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236238
description abstractA dynamic model is developed for small-scale robots with multiple high-frequency actuated compliant elastic legs and a rigid body. The motion of the small-scale robots results from dual-direction motion of piezoelectric actuators attached to the legs, with impact dynamics increasing robot locomotion complexity. A dynamic model is developed to describe the small-scale robot motion in the presence of variable properties of the underlying terrain. The dynamic model is derived from beam theory with appropriate boundary and loading conditions and considers each robot leg as a continuous structure moving in two directions. Robot body motion is modeled in up to five degrees-of-freedom (DOF) using a rigid body approximation for the central robot chassis. Individual modes of the resulting multimode robot are treated as second-order linear systems. The dynamic model is tested with two different centimeter-scale robot prototypes having an analogous actuation scheme to millimeter-scale microrobots. In accounting for the interaction between the robot and ground, a dynamic model using the first two modes of each leg shows good agreement with experimental results for the centimeter-scale prototypes, in terms of both magnitude and the trends in robot locomotion with respect to actuation conditions.
publisherThe American Society of Mechanical Engineers (ASME)
titleModeling Legged Microrobot Locomotion Based on Contact Dynamics and Vibration in Multiple Modes and Axes
typeJournal Paper
journal volume139
journal issue3
journal titleJournal of Vibration and Acoustics
identifier doi10.1115/1.4035959
journal fristpage31013
journal lastpage031013-10
treeJournal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record