Show simple item record

contributor authorWang, Yachao
contributor authorShi, Jing
contributor authorLu, Shiqiang
contributor authorWang, Yun
date accessioned2017-11-25T07:17:40Z
date available2017-11-25T07:17:40Z
date copyright2016/18/10
date issued2017
identifier issn1087-1357
identifier othermanu_139_04_041005.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234716
description abstractGraphene nanoplatelets (GNPs) have many outstanding properties, such as high mechanical strengths, light weight, and high electric conductivity. These unique properties make it an ideal reinforcement used for metal matrix composites (MMCs). In the past few years, many studies have been performed to incorporate GNPs into metal matrix and investigate the properties of obtained metal matrix composites. Meanwhile, fabrication of MMCs through laser-assisted additive manufacturing (LAAM) has attracted much attention in recent years due to the advantages of low waste, high precision, short production lead time, and high workpiece complexity capability. In this study, the two attractive features are combined to produce GNPs reinforced MMC using selective laser melting (SLM) process, one of the LAAM processes. The target metal matrix material is Inconel 718, a nickel-based Ni–Cr–Fe austenitic superalloy that possesses excellent workability and mechanical performance, and has wide applications in industries. In the experiment, pure Inconel 718 and GNPs reinforced Inconel 718 composites with two levels of GNPs content (i.e., 0.25 and 1 wt. %) are obtained by SLM. Note that before the SLM process, a novel powder mixture procedure is employed to ensure the even dispersion of GNPs in the Inconel 718 powders. Room temperature tensile tests are conducted to evaluate the tensile properties. Scanning electron microscopy (SEM) observations are conducted to analyze the fracture surface of materials and to understand the reinforcing mechanism. It is found that fabrication of GNPs reinforced MMC using SLM is a viable approach. The obtained composite possesses dense microstructure and significantly enhanced tensile strength. The ultimate tensile strengths (UTSs) are 997.8, 1296.3, and 1511.6 MPa, and the Young's moduli are 475, 536, and 675 GPa, for 0 wt. % (pure Inconel 718), 0.25 wt. %, and 1 wt. % GNP additions, respectively. The bonding between GNPs and matrix material appears to be strong, and GNPs could be retained during the SLM process. The strengthening effect and mechanisms involved in the composites are discussed. Load transfer, thermal expansion coefficient mismatch, and dislocation hindering are believed to be the three main reinforcing mechanisms involved. It should be noted that more work needs to be conducted in the future to obtain more comprehensive information regarding other static and dynamic properties and the high-temperature performances of the GNP-reinforced MMCs produced by SLM. Process parameter optimization should also be investigated.
publisherThe American Society of Mechanical Engineers (ASME)
titleSelective Laser Melting of Graphene-Reinforced Inconel 718 Superalloy: Evaluation of Microstructure and Tensile Performance
typeJournal Paper
journal volume139
journal issue4
journal titleJournal of Manufacturing Science and Engineering
identifier doi10.1115/1.4034712
journal fristpage41005
journal lastpage041005-6
treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record