Show simple item record

contributor authorTeng, Chong
contributor authorGong, Haijun
contributor authorSzabo, Attila
contributor authorDilip, J. J. S.
contributor authorAshby, Katy
contributor authorZhang, Shanshan
contributor authorPatil, Nachiket
contributor authorPal, Deepankar
contributor authorStucker, Brent
date accessioned2017-11-25T07:17:34Z
date available2017-11-25T07:17:34Z
date copyright2016/10/8
date issued2017
identifier issn1087-1357
identifier othermanu_139_01_011009.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234657
description abstractCobalt chromium is widely used to make medical implants and wind turbine, engine and aircraft components because of its high wear and corrosion resistance. The ability to process geometrically complex components is an area of intense interest to enable shifting from traditional manufacturing techniques to additive manufacturing (AM). The major reason for using AM is to ease design modification and optimization since AM machines can directly apply the changes from an updated STL file to print a geometrically complex object. Quality assurance for AM fabricated parts is recognized as a critical limitation of AM processes. In selective laser melting (SLM), layer by layer melting and remelting can lead to porosity defects caused by lack of fusion, balling, and keyhole collapse. Machine process parameter optimization becomes a very important task and is usually accomplished by producing a large amount of experimental coupons with different combinations of process parameters such as laser power, speed, hatch spacing, and powder layer thickness. In order to save the cost and time of these experimental trial and error methods, many researchers have attempted to simulate defect formation in SLM. Many physics-based assumptions must be made to model these processes, and thus, all the models are limited in some aspects. In the present work, we investigated single bead melt pool shapes for SLM of CoCr to tune the physics assumptions and then, applied to the model to predict bulk lack of fusion porosity within the finished parts. The simulation results were compared and validated against experimental results and show a high degree of correlation.
publisherThe American Society of Mechanical Engineers (ASME)
titleSimulating Melt Pool Shape and Lack of Fusion Porosity for Selective Laser Melting of Cobalt Chromium Components
typeJournal Paper
journal volume139
journal issue1
journal titleJournal of Manufacturing Science and Engineering
identifier doi10.1115/1.4034137
journal fristpage11009
journal lastpage011009-11
treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record