Show simple item record

contributor authorNatesh, Shashank
contributor authorTruong, Eric
contributor authorNarayanan, Vinod
contributor authorBhavnani, Sushil
date accessioned2017-11-25T07:17:01Z
date available2017-11-25T07:17:01Z
date copyright2017/21/6
date issued2017
identifier issn0022-1481
identifier otherht_139_11_111507.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234360
description abstractCondensation of a highly wetting fluid on a horizontal surface with asymmetric millimeter-sized ratchets and periodically located film drainage pathways (DPs) in the spanwise direction is characterized. The hypothesis to be tested is whether the geometry would result in a net steady-state preferential drainage of the condensate film. Experiments are performed using PF5060 on a brass surface with ratchets of 3 mm pitch and 75–15 deg asymmetry. Drainage pathways are varied in density as nondimensional drainage pathways per meter depth ranging from 133 to 400. Experiments are performed at varied wall subcooling temperatures from 1 to 10 °C. Results of the asymmetric ratchet are compared against a control test surface with 45–45 deg symmetric ratchets. Both global and film visualization experiments are performed to characterize the differences in condensation between the symmetric and asymmetric surfaces. Global mass collection results indicate that all characterized asymmetric ratchet surfaces exhibit a net directional drainage of condensate while the symmetric control surface exhibited no preferential drainage. Among the asymmetric ratchets, the total mass flux rate increase with decrease in drainage pathway density, while the net mass flux rate increased with pathway density. Visualization of the condensate film was performed to explain the trends in net drainage with subcooling for different drainage pathway densities. For small drainage path density surfaces, a two-dimensional analytical model was developed to further characterize the effect of ratchet angle and Bond number on the net preferential drainage.
publisherThe American Society of Mechanical Engineers (ASME)
titleDirectional Passive Condensate Film Drainage on a Horizontal Surface With Periodic Asymmetrical Structures
typeJournal Paper
journal volume139
journal issue11
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4036708
journal fristpage111507
journal lastpage111507-15
treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record