contributor author | Liu, Zhengang | |
contributor author | Liu, Zhenxia | |
date accessioned | 2017-11-25T07:16:26Z | |
date available | 2017-11-25T07:16:26Z | |
date copyright | 2017/16/3 | |
date issued | 2017 | |
identifier issn | 0098-2202 | |
identifier other | fe_139_05_051302.pdf | |
identifier uri | http://138.201.223.254:8080/yetl1/handle/yetl/4234007 | |
description abstract | Poiseuille flows at two Reynolds numbers (Re) 2.5 × 10−2 and 5.0 are simulated by two different smoothed particle hydrodynamics (SPH) schemes on regular and irregular initial particles' distributions. In the first scheme, the viscous stress is calculated directly by the basic SPH particle approximation, while in the second scheme, the viscous stress is calculated by the combination of SPH particle approximation and finite difference method (FDM). The main aims of this paper are (a) investigating the influences of two different schemes on simulations and reducing the numerical instability in simulating Poiseuille flows discovered by other researchers and (b) investigating whether the similar instability exists in other cases and comparing results with the two viscous stress approximations. For Re = 2.5 × 10−2, the simulation with the first scheme becomes instable after the flow approaches to steady-state. However, this instability could be reduced by the second scheme. For Re = 5.0, no instability for two schemes is found. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | The Comparison of Viscous Force Approximations of Smoothed Particle Hydrodynamics in Poiseuille Flow Simulation | |
type | Journal Paper | |
journal volume | 139 | |
journal issue | 5 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.4035635 | |
journal fristpage | 51302 | |
journal lastpage | 051302-13 | |
tree | Journal of Fluids Engineering:;2017:;volume( 139 ):;issue: 005 | |
contenttype | Fulltext | |