YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nimbus 3/ATS 3 Observations of the Evolution of Hurricane Camille

    Source: Journal of Applied Meteorology:;1978:;volume( 017 ):;issue: 004::page 458
    Author:
    Shenk, William E.
    ,
    Rodgers, Edward B.
    DOI: 10.1175/1520-0450(1978)017<0458:NOOTEO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Three periods within the life cycle of Hurricane Camille (1969) are examined with radiometric and camera measurements from Nimbus 3 and camera information from ATS 3 in conjunction with conventional information. These periods are the deepening phase, the interaction of Camille with mid-latitude westerlies, and the excessive rain-producing period when the cyclone was over the central Appalachians. Just prior to significant deepening, the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) window and water vapor channels showed a band of developing convection that extended to the cirrus level in the southeastern quadrant of the storm which originated from the ITCZ. Low-level wind fields were derived from conventional sources as well as from cumulus clouds tracked from a series of ATS 3 images. Within this band were low-level 30 kt winds that supplied Camille with strong inflow where the air passed over sea surface temperatures that were 1?3 standard deviations above normal. At the beginning of the rapid deepening the MRIR radiometer measurements indicated a rapid contraction of the central dense overcast and then an expansion as the maximum deepening rate occurred. Simultaneously, the increase in the MRIR equivalent blackbody temperatures (TBB) indicated the development of large-scale subsidence throughout the troposphere northwest of the center. When Camille weakened as it moved over the lower Mississippi Valley, the cyclone acted as a partial obstruction to the synoptic-scale flow and increased the subsidence west and north of the cyclone center as indicated by the increase in water vapor TBB and verified by three-dimensional trajectories. Increased cloud-top elevations, approaching the levels reached when Camille was an intense cyclone over the Gulf of Mexico, were estimated from the Nimbus 3 High Resolution Infrared Radiometer (HRIR) measurements on 20 August 1969, when Camille produced rains of major flood proportions near the east slopes of the Appalachians in central Virginia.
    • Download: (2.437Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nimbus 3/ATS 3 Observations of the Evolution of Hurricane Camille

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4232915
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorShenk, William E.
    contributor authorRodgers, Edward B.
    date accessioned2017-06-09T17:39:25Z
    date available2017-06-09T17:39:25Z
    date copyright1978/04/01
    date issued1978
    identifier issn0021-8952
    identifier otherams-9428.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4232915
    description abstractThree periods within the life cycle of Hurricane Camille (1969) are examined with radiometric and camera measurements from Nimbus 3 and camera information from ATS 3 in conjunction with conventional information. These periods are the deepening phase, the interaction of Camille with mid-latitude westerlies, and the excessive rain-producing period when the cyclone was over the central Appalachians. Just prior to significant deepening, the Nimbus 3 Medium Resolution Infrared Radiometer (MRIR) window and water vapor channels showed a band of developing convection that extended to the cirrus level in the southeastern quadrant of the storm which originated from the ITCZ. Low-level wind fields were derived from conventional sources as well as from cumulus clouds tracked from a series of ATS 3 images. Within this band were low-level 30 kt winds that supplied Camille with strong inflow where the air passed over sea surface temperatures that were 1?3 standard deviations above normal. At the beginning of the rapid deepening the MRIR radiometer measurements indicated a rapid contraction of the central dense overcast and then an expansion as the maximum deepening rate occurred. Simultaneously, the increase in the MRIR equivalent blackbody temperatures (TBB) indicated the development of large-scale subsidence throughout the troposphere northwest of the center. When Camille weakened as it moved over the lower Mississippi Valley, the cyclone acted as a partial obstruction to the synoptic-scale flow and increased the subsidence west and north of the cyclone center as indicated by the increase in water vapor TBB and verified by three-dimensional trajectories. Increased cloud-top elevations, approaching the levels reached when Camille was an intense cyclone over the Gulf of Mexico, were estimated from the Nimbus 3 High Resolution Infrared Radiometer (HRIR) measurements on 20 August 1969, when Camille produced rains of major flood proportions near the east slopes of the Appalachians in central Virginia.
    publisherAmerican Meteorological Society
    titleNimbus 3/ATS 3 Observations of the Evolution of Hurricane Camille
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1978)017<0458:NOOTEO>2.0.CO;2
    journal fristpage458
    journal lastpage476
    treeJournal of Applied Meteorology:;1978:;volume( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian