YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior of an Inversion-Based precipitation Retrieval Algorithm with High-Resolution AMPR Measurements Including a Low-Frequency 10.7-GHz Channel

    Source: Journal of Atmospheric and Oceanic Technology:;1994:;volume( 011 ):;issue: 004::page 858
    Author:
    Smith, E. A.
    ,
    Xiang, X.
    ,
    Mugnai, A.
    ,
    Hood, R. E.
    ,
    Spencer, R. W.
    DOI: 10.1175/1520-0426(1994)011<0858:BOAIBP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A microwave-based, profile-type precipitation retrieval algorithm has been used to analyze high-resolution passive microwave measurements over an ocean background, obtained by the Advanced Microwave Precipitation Radiometer(AMPR) flown on ANASA ER-2 aircraft. The analysis is designed to first determine the improvements that can be gained by adding brightness temperature information from the AMPR low-frequency channel (10.7 GHz) to a multispectral retrieval algorithm nominally run with satellite information at 19, 37, and 85 GHZ. The impact of spatial resolution degradation of the high-resolution brightness temperature information on the retrieved rain/cloud liquid water contents and ice water contents is then quantified in order to assess the possible biases inherent to satellite-bawd retrieval. The tests are conducted on a dataset obtained during a preliminary flight experiment that took place on 18 October 1990 over a Gulf of Mexico squall line that developed south of the Florida Panhandle. Careful inspection of the high-resolution aircraft dataset reveals five distinctive brightness temperature features associated with cloud structure and scattering effects that are not generally detectable in current passive microwave satellite measurements. Recovery of such high-resolution information by satellites would generally be expected to improve precipitation retrieval, but these improvements have never been quantified and thus are addressed in this study. Results suggest that the inclusion of 10.7-GHz information overcomes two basic problems associated with three-channel retrieval. First, unresolved rainfall gradients in the lower cloud layers due to 19-GHz blackbody saturation effects are recovered when the 10.7-GHz channel data are included. Second, unrealistic oscillations in the retrieved rain liquid water contents that arise from the highly variable scattering signatures at 19, 37, and 85 GHz are eliminated by virtue of the 10.7-GHz Rayleigh frequency probing into the lower cloud containing the bulk of the liquid water. Intercomparisons of retrievals carried out at high-resolution and then averaged to a characteristic satellite spatial scale to the corresponding retrievals in which the brightness temperatures are first convolved down to the satellite scale suggest that with the addition of the 10.7-GHz channel, the rain liquid water contents will not be negatively impacted by special resolution degradation. That is not the case with the ice water contents as they appear to be quite sensitive to the imposed scale, the implication being that as spatial resolution is reduced, ice water contents will become increasingly underestimated. The overall implications of this study in the context of the upcoming United States?Japan Tropical Rainfall Measuring Mission are that the inclusion of a 10.7-GHz frequency on the passive microwave radiometer and the relatively higher spatial resolution of the low and intermediate frequencies at 10.7, 19, and 35 GHz resulting from the relatively low orbit (? 350 km) will lead to significantly improved microwave-based rainfall measurements over what are currently available today.
    • Download: (1.398Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior of an Inversion-Based precipitation Retrieval Algorithm with High-Resolution AMPR Measurements Including a Low-Frequency 10.7-GHz Channel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4232861
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorSmith, E. A.
    contributor authorXiang, X.
    contributor authorMugnai, A.
    contributor authorHood, R. E.
    contributor authorSpencer, R. W.
    date accessioned2017-06-09T17:39:17Z
    date available2017-06-09T17:39:17Z
    date copyright1994/08/01
    date issued1994
    identifier issn0739-0572
    identifier otherams-938.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4232861
    description abstractA microwave-based, profile-type precipitation retrieval algorithm has been used to analyze high-resolution passive microwave measurements over an ocean background, obtained by the Advanced Microwave Precipitation Radiometer(AMPR) flown on ANASA ER-2 aircraft. The analysis is designed to first determine the improvements that can be gained by adding brightness temperature information from the AMPR low-frequency channel (10.7 GHz) to a multispectral retrieval algorithm nominally run with satellite information at 19, 37, and 85 GHZ. The impact of spatial resolution degradation of the high-resolution brightness temperature information on the retrieved rain/cloud liquid water contents and ice water contents is then quantified in order to assess the possible biases inherent to satellite-bawd retrieval. The tests are conducted on a dataset obtained during a preliminary flight experiment that took place on 18 October 1990 over a Gulf of Mexico squall line that developed south of the Florida Panhandle. Careful inspection of the high-resolution aircraft dataset reveals five distinctive brightness temperature features associated with cloud structure and scattering effects that are not generally detectable in current passive microwave satellite measurements. Recovery of such high-resolution information by satellites would generally be expected to improve precipitation retrieval, but these improvements have never been quantified and thus are addressed in this study. Results suggest that the inclusion of 10.7-GHz information overcomes two basic problems associated with three-channel retrieval. First, unresolved rainfall gradients in the lower cloud layers due to 19-GHz blackbody saturation effects are recovered when the 10.7-GHz channel data are included. Second, unrealistic oscillations in the retrieved rain liquid water contents that arise from the highly variable scattering signatures at 19, 37, and 85 GHz are eliminated by virtue of the 10.7-GHz Rayleigh frequency probing into the lower cloud containing the bulk of the liquid water. Intercomparisons of retrievals carried out at high-resolution and then averaged to a characteristic satellite spatial scale to the corresponding retrievals in which the brightness temperatures are first convolved down to the satellite scale suggest that with the addition of the 10.7-GHz channel, the rain liquid water contents will not be negatively impacted by special resolution degradation. That is not the case with the ice water contents as they appear to be quite sensitive to the imposed scale, the implication being that as spatial resolution is reduced, ice water contents will become increasingly underestimated. The overall implications of this study in the context of the upcoming United States?Japan Tropical Rainfall Measuring Mission are that the inclusion of a 10.7-GHz frequency on the passive microwave radiometer and the relatively higher spatial resolution of the low and intermediate frequencies at 10.7, 19, and 35 GHz resulting from the relatively low orbit (? 350 km) will lead to significantly improved microwave-based rainfall measurements over what are currently available today.
    publisherAmerican Meteorological Society
    titleBehavior of an Inversion-Based precipitation Retrieval Algorithm with High-Resolution AMPR Measurements Including a Low-Frequency 10.7-GHz Channel
    typeJournal Paper
    journal volume11
    journal issue4
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1994)011<0858:BOAIBP>2.0.CO;2
    journal fristpage858
    journal lastpage873
    treeJournal of Atmospheric and Oceanic Technology:;1994:;volume( 011 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian