YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Response of a Two-Dimensional Dual-Doppler Radar Wind Synthesis

    Source: Journal of Atmospheric and Oceanic Technology:;1994:;volume( 011 ):;issue: 002::page 239
    Author:
    Given, Terence
    ,
    Ray, Peter S.
    DOI: 10.1175/1520-0426(1994)011<0239:ROATDD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The wind field resulting from a two-dimensional dual-Doppler synthesis algorithms is spectrally modified from the true wind field. The effects of spatial filtering on wind fields from the processes of interpolation, the averaging of pulses, and the effect of the finite radar pulse dimension were assessed. The effect resulting from the use of different interpolation techniques was also evaluated. Of those techniques tested, the best are the Cressman distance-weighted averaging and linear distance-weighted averaging, with the closest neighbor and uniform weighting having more undesirable characteristics. The optimum influence radius is defined as the influence radius at which the ratio of the rms difference between the Fourier and least-squares responses (a measure of the aliasing) and the variance of the filtered wind field is minimized. This seeks to minimize the effect of energy aliased into scales other than the input wavelength. For the Cressman interpolation technique, the optimum influence radius is between 1.85 and 2.25 times the maximum data spacing. The range of acceptable influence radii includes consideration of the filtering by the radar of the data as it is collected, as well as the resolution of the final dataset. The optimum influence radius is dependent upon the largest data separation in the analysis domain. The absolute optimum influence radius is not significantly affected by inclusion of the radar-beam filtering effects.
    • Download: (1.384Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Response of a Two-Dimensional Dual-Doppler Radar Wind Synthesis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4232305
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorGiven, Terence
    contributor authorRay, Peter S.
    date accessioned2017-06-09T17:38:08Z
    date available2017-06-09T17:38:08Z
    date copyright1994/04/01
    date issued1994
    identifier issn0739-0572
    identifier otherams-888.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4232305
    description abstractThe wind field resulting from a two-dimensional dual-Doppler synthesis algorithms is spectrally modified from the true wind field. The effects of spatial filtering on wind fields from the processes of interpolation, the averaging of pulses, and the effect of the finite radar pulse dimension were assessed. The effect resulting from the use of different interpolation techniques was also evaluated. Of those techniques tested, the best are the Cressman distance-weighted averaging and linear distance-weighted averaging, with the closest neighbor and uniform weighting having more undesirable characteristics. The optimum influence radius is defined as the influence radius at which the ratio of the rms difference between the Fourier and least-squares responses (a measure of the aliasing) and the variance of the filtered wind field is minimized. This seeks to minimize the effect of energy aliased into scales other than the input wavelength. For the Cressman interpolation technique, the optimum influence radius is between 1.85 and 2.25 times the maximum data spacing. The range of acceptable influence radii includes consideration of the filtering by the radar of the data as it is collected, as well as the resolution of the final dataset. The optimum influence radius is dependent upon the largest data separation in the analysis domain. The absolute optimum influence radius is not significantly affected by inclusion of the radar-beam filtering effects.
    publisherAmerican Meteorological Society
    titleResponse of a Two-Dimensional Dual-Doppler Radar Wind Synthesis
    typeJournal Paper
    journal volume11
    journal issue2
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1994)011<0239:ROATDD>2.0.CO;2
    journal fristpage239
    journal lastpage255
    treeJournal of Atmospheric and Oceanic Technology:;1994:;volume( 011 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian