YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Forecast of Precipitation Probability Based on a Pattern Recognition Algorithm

    Source: Journal of Applied Meteorology:;1975:;volume( 014 ):;issue: 002::page 180
    Author:
    Paegle, Julia N.
    ,
    Wright, Robert P.
    DOI: 10.1175/1520-0450(1975)014<0180:FOPPBO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A nonparametric statistical technique is developed which is capable of interfacing with dynamic atmospheric models to produce probability of precipitation forecasts. The technique is implicitly nonlinear, utilizing an efficient algorithm to represent joint probability densities as N-dimensional histograms. Operationally, the method can be updated on a daily basis. The technique is tested in an atmospheric data sample. Initial predictor selection is based on a general nonlinear approach applying fields of the sample correlation ratio. An iterative algorithm optimization technique is described and utilized. The technique is tested and shown to have significant skill relative to climatology.
    • Download: (678.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Forecast of Precipitation Probability Based on a Pattern Recognition Algorithm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4232222
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorPaegle, Julia N.
    contributor authorWright, Robert P.
    date accessioned2017-06-09T17:37:59Z
    date available2017-06-09T17:37:59Z
    date copyright1975/03/01
    date issued1975
    identifier issn0021-8952
    identifier otherams-8844.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4232222
    description abstractA nonparametric statistical technique is developed which is capable of interfacing with dynamic atmospheric models to produce probability of precipitation forecasts. The technique is implicitly nonlinear, utilizing an efficient algorithm to represent joint probability densities as N-dimensional histograms. Operationally, the method can be updated on a daily basis. The technique is tested in an atmospheric data sample. Initial predictor selection is based on a general nonlinear approach applying fields of the sample correlation ratio. An iterative algorithm optimization technique is described and utilized. The technique is tested and shown to have significant skill relative to climatology.
    publisherAmerican Meteorological Society
    titleForecast of Precipitation Probability Based on a Pattern Recognition Algorithm
    typeJournal Paper
    journal volume14
    journal issue2
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1975)014<0180:FOPPBO>2.0.CO;2
    journal fristpage180
    journal lastpage188
    treeJournal of Applied Meteorology:;1975:;volume( 014 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian