YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Study of Eddy Fluxes Over a Forest

    Source: Journal of Applied Meteorology:;1975:;volume( 014 ):;issue: 001::page 58
    Author:
    Hicks, B. B.
    ,
    Hyson, P.
    ,
    Moore, C. J.
    DOI: 10.1175/1520-0450(1975)014<0058:ASOEFO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Eddy correlation instruments mounted above a plantation of Pinus radiato near Mt. Gambier, South Australia, have been operated during two periods of intensive effort, in May and October, 1972. Measurements of the Reynolds stress and of wind speed gradients show that the zero plane for momentum is located at about d = 0.8h (where h is the height of the trees), and that the roughness length of the surface is about 30% of the difference (h?d).Sensible heat fluxes and temperature gradients give a displacement length not significantly different from that applicable in the momentum case, but the roughness length for sensible heat transfer is smaller than that for momentum, by about a factor of 3.Advective effects are found to be important, particularly when the fetch across the canopy is less than about 0.8 km (corresponding in our case to an effective fetch/height ratio of between 100 and 200). Long-fetch cases allow an evaluation of the heat storage (S) in the canopy and in the air below the height of eddy flux measurement. The rate of heat storage is found to be about 60 ± 20 W m?2 per °C h?1 of canopy temperature change (for a densely packed forest with trees about 13 m high), which is compatible with measurements of the biomass and assumed specific heats. The residual heat energy at about 6 m above the effective zero plane, unaccounted for by the various measured fluxes, is found to be related to the difference in net radiation over grassland and forest.During daytime, the forest is found to lose heat by turbulence in much the same manner as pasture, with fluxes of similar magnitude (although possibly differing to the extent of differences in ground flux, albedo and emissivity, for example) and giving similar Bowen ratios. At night, however, the evaporation from the forest tends to continue as heat is supplied by the cooling canopy. This is in direct contrast to the usual situation over pasture, where the heat storage is not of sufficient magnitude to result in this behavior.
    • Download: (726.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Study of Eddy Fluxes Over a Forest

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4232044
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorHicks, B. B.
    contributor authorHyson, P.
    contributor authorMoore, C. J.
    date accessioned2017-06-09T17:37:32Z
    date available2017-06-09T17:37:32Z
    date copyright1975/02/01
    date issued1975
    identifier issn0021-8952
    identifier otherams-8828.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4232044
    description abstractEddy correlation instruments mounted above a plantation of Pinus radiato near Mt. Gambier, South Australia, have been operated during two periods of intensive effort, in May and October, 1972. Measurements of the Reynolds stress and of wind speed gradients show that the zero plane for momentum is located at about d = 0.8h (where h is the height of the trees), and that the roughness length of the surface is about 30% of the difference (h?d).Sensible heat fluxes and temperature gradients give a displacement length not significantly different from that applicable in the momentum case, but the roughness length for sensible heat transfer is smaller than that for momentum, by about a factor of 3.Advective effects are found to be important, particularly when the fetch across the canopy is less than about 0.8 km (corresponding in our case to an effective fetch/height ratio of between 100 and 200). Long-fetch cases allow an evaluation of the heat storage (S) in the canopy and in the air below the height of eddy flux measurement. The rate of heat storage is found to be about 60 ± 20 W m?2 per °C h?1 of canopy temperature change (for a densely packed forest with trees about 13 m high), which is compatible with measurements of the biomass and assumed specific heats. The residual heat energy at about 6 m above the effective zero plane, unaccounted for by the various measured fluxes, is found to be related to the difference in net radiation over grassland and forest.During daytime, the forest is found to lose heat by turbulence in much the same manner as pasture, with fluxes of similar magnitude (although possibly differing to the extent of differences in ground flux, albedo and emissivity, for example) and giving similar Bowen ratios. At night, however, the evaporation from the forest tends to continue as heat is supplied by the cooling canopy. This is in direct contrast to the usual situation over pasture, where the heat storage is not of sufficient magnitude to result in this behavior.
    publisherAmerican Meteorological Society
    titleA Study of Eddy Fluxes Over a Forest
    typeJournal Paper
    journal volume14
    journal issue1
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1975)014<0058:ASOEFO>2.0.CO;2
    journal fristpage58
    journal lastpage66
    treeJournal of Applied Meteorology:;1975:;volume( 014 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian