YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reply to “Comments on ‘Incorporating the Effects of Moisture into a Dynamical Parameter: Moist Vorticity and Moist Divergence’”

    Source: Weather and Forecasting:;2016:;volume( 031 ):;issue: 004::page 1397
    Author:
    Qian, Weihong
    ,
    Jiang, Ning
    ,
    Du, Jun
    DOI: 10.1175/WAF-D-16-0111.1
    Publisher: American Meteorological Society
    Abstract: athematical derivation, meteorological justification, and comparison to model direct precipitation forecasts are the three main concerns recently raised by Schultz and Spengler about moist divergence (MD) and moist vorticity (MV), which were introduced in earlier work by Qian et al. That previous work demonstrated that MD (MV) can in principle be derived mathematically with a value-added empirical modification. MD (MV) has a solid meteorological basis. It combines ascent motion and high moisture: the two elements necessary for rainfall. However, precipitation efficiency is not considered in MD (MV). Given the omission of an advection term in the mathematical derivation and the lack of precipitation efficiency, MD (MV) might be suitable mainly for heavy rain events with large areal coverage and long duration caused by large-scale quasi-stationary weather systems, but not for local intense heavy rain events caused by small-scale convection. In addition, MD (MV) is not capable of describing precipitation intensity. MD (MV) worked reasonably well in predicting heavy rain locations from short to medium ranges as compared with the ECMWF model precipitation forecasts. MD (MV) was generally worse than (though sometimes similar to) the model heavy rain forecast at shorter ranges (about a week) but became comparable or even better at longer ranges (around 10 days). It should be reiterated that MD (MV) is not intended to be a primary tool for predicting heavy rain areas, especially in the short range, but is a useful parameter for calibrating model heavy precipitation forecasts, as stated in the original paper.
    • Download: (1.576Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reply to “Comments on ‘Incorporating the Effects of Moisture into a Dynamical Parameter: Moist Vorticity and Moist Divergence’”

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4232035
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorQian, Weihong
    contributor authorJiang, Ning
    contributor authorDu, Jun
    date accessioned2017-06-09T17:37:31Z
    date available2017-06-09T17:37:31Z
    date copyright2016/08/01
    date issued2016
    identifier issn0882-8156
    identifier otherams-88273.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4232035
    description abstractathematical derivation, meteorological justification, and comparison to model direct precipitation forecasts are the three main concerns recently raised by Schultz and Spengler about moist divergence (MD) and moist vorticity (MV), which were introduced in earlier work by Qian et al. That previous work demonstrated that MD (MV) can in principle be derived mathematically with a value-added empirical modification. MD (MV) has a solid meteorological basis. It combines ascent motion and high moisture: the two elements necessary for rainfall. However, precipitation efficiency is not considered in MD (MV). Given the omission of an advection term in the mathematical derivation and the lack of precipitation efficiency, MD (MV) might be suitable mainly for heavy rain events with large areal coverage and long duration caused by large-scale quasi-stationary weather systems, but not for local intense heavy rain events caused by small-scale convection. In addition, MD (MV) is not capable of describing precipitation intensity. MD (MV) worked reasonably well in predicting heavy rain locations from short to medium ranges as compared with the ECMWF model precipitation forecasts. MD (MV) was generally worse than (though sometimes similar to) the model heavy rain forecast at shorter ranges (about a week) but became comparable or even better at longer ranges (around 10 days). It should be reiterated that MD (MV) is not intended to be a primary tool for predicting heavy rain areas, especially in the short range, but is a useful parameter for calibrating model heavy precipitation forecasts, as stated in the original paper.
    publisherAmerican Meteorological Society
    titleReply to “Comments on ‘Incorporating the Effects of Moisture into a Dynamical Parameter: Moist Vorticity and Moist Divergence’”
    typeJournal Paper
    journal volume31
    journal issue4
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF-D-16-0111.1
    journal fristpage1397
    journal lastpage1405
    treeWeather and Forecasting:;2016:;volume( 031 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian