Tropical Cyclone Intensity Estimation Using RVM and DADI Based on Infrared Brightness TemperatureSource: Weather and Forecasting:;2016:;volume( 031 ):;issue: 005::page 1643DOI: 10.1175/WAF-D-15-0100.1Publisher: American Meteorological Society
Abstract: n objective technique is presented to estimate tropical cyclone intensity using the relevance vector machine (RVM) and deviation angle distribution inhomogeneity (DADI) based on infrared satellite images of the northwest Pacific Ocean basin from China?s FY-2C geostationary satellite. Using this technique, structures of a deviation-angle gradient co-occurrence matrix, which include 15 statistical parameters nonlinearly related to tropical cyclone intensity, were derived from infrared satellite imagery. RVM was then used to relate these statistical parameters to tropical cyclone intensity. Twenty-two tropical cyclones occurred in the northwest Pacific during 2005?09 and were selected to verify the performance of the proposed technique. The results show that, in comparison with the traditional linear regression method, the proposed technique can significantly improve the accuracy of tropical cyclone intensity estimation. The average absolute error of intensity estimation using the linear regression method is between 15 and 29 m s?1. Compared to the linear regression method, the average absolute error of the intensity estimation using RVM is between 3 and 10 m s?1.
|
Collections
Show full item record
contributor author | Zhang, Chang-Jiang | |
contributor author | Qian, Jin-Fang | |
contributor author | Ma, Lei-Ming | |
contributor author | Lu, Xiao-Qin | |
date accessioned | 2017-06-09T17:37:07Z | |
date available | 2017-06-09T17:37:07Z | |
date copyright | 2016/10/01 | |
date issued | 2016 | |
identifier issn | 0882-8156 | |
identifier other | ams-88161.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4231910 | |
description abstract | n objective technique is presented to estimate tropical cyclone intensity using the relevance vector machine (RVM) and deviation angle distribution inhomogeneity (DADI) based on infrared satellite images of the northwest Pacific Ocean basin from China?s FY-2C geostationary satellite. Using this technique, structures of a deviation-angle gradient co-occurrence matrix, which include 15 statistical parameters nonlinearly related to tropical cyclone intensity, were derived from infrared satellite imagery. RVM was then used to relate these statistical parameters to tropical cyclone intensity. Twenty-two tropical cyclones occurred in the northwest Pacific during 2005?09 and were selected to verify the performance of the proposed technique. The results show that, in comparison with the traditional linear regression method, the proposed technique can significantly improve the accuracy of tropical cyclone intensity estimation. The average absolute error of intensity estimation using the linear regression method is between 15 and 29 m s?1. Compared to the linear regression method, the average absolute error of the intensity estimation using RVM is between 3 and 10 m s?1. | |
publisher | American Meteorological Society | |
title | Tropical Cyclone Intensity Estimation Using RVM and DADI Based on Infrared Brightness Temperature | |
type | Journal Paper | |
journal volume | 31 | |
journal issue | 5 | |
journal title | Weather and Forecasting | |
identifier doi | 10.1175/WAF-D-15-0100.1 | |
journal fristpage | 1643 | |
journal lastpage | 1654 | |
tree | Weather and Forecasting:;2016:;volume( 031 ):;issue: 005 | |
contenttype | Fulltext |