YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison and Combination of Regional and Global Ensemble Prediction Systems for Probabilistic Predictions of Hub-Height Wind Speed

    Source: Weather and Forecasting:;2015:;volume( 030 ):;issue: 005::page 1234
    Author:
    Junk, Constantin
    ,
    Späth, Stephan
    ,
    von Bremen, Lueder
    ,
    Delle Monache, Luca
    DOI: 10.1175/WAF-D-15-0021.1
    Publisher: American Meteorological Society
    Abstract: he objective of this paper is to compare probabilistic 100-m wind speed forecasts, which are relevant for wind energy applications, from different regional and global ensemble prediction systems (EPSs) at six measurement towers in central Europe and to evaluate the benefits of combining single-model ensembles into multimodel ensembles. The global 51-member EPS from the European Centre for Medium-Range Weather Forecasts (ECMWF EPS) is compared against the Consortium for Small-Scale Modelling?s (COSMO) limited-area 16-member EPS (COSMO-LEPS) and a regional, high-resolution 20-member EPS centered over Germany (COSMO-DE EPS). The ensemble forecasts are calibrated with univariate (wind speed) ensemble model output statistics (EMOS) and bivariate (wind vector) recursive and adaptive calibration (AUV). The multimodel ensembles are constructed by pooling together raw or best-calibrated ensemble forecasts. An additional postprocessing of these multimodel ensembles with both EMOS and AUV is also tested. The best-performing calibration methodology for ECMWF EPS is AUV, while EMOS performs better than AUV for the calibration of COSMO-DE EPS. COSMO-LEPS has similar skill when calibrated with both EMOS and AUV. The AUV ECMWF EPS outperforms the EMOS COSMO-LEPS and COSMO-DE EPS for deterministic and probabilistic wind speed forecast skill. For most thresholds, ECMWF EPS has a comparable reliability and sharpness but higher discrimination ability. Multimodel ensembles, which are constructed by pooling together the best-calibrated EPSs, improve the skill relative to the AUV ECMWF EPS. An analysis of the error correlation among the EPSs indicates that multimodel ensemble skill can be considerably higher when the error correlation is low.
    • Download: (2.446Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison and Combination of Regional and Global Ensemble Prediction Systems for Probabilistic Predictions of Hub-Height Wind Speed

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231862
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorJunk, Constantin
    contributor authorSpäth, Stephan
    contributor authorvon Bremen, Lueder
    contributor authorDelle Monache, Luca
    date accessioned2017-06-09T17:36:56Z
    date available2017-06-09T17:36:56Z
    date copyright2015/10/01
    date issued2015
    identifier issn0882-8156
    identifier otherams-88117.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231862
    description abstracthe objective of this paper is to compare probabilistic 100-m wind speed forecasts, which are relevant for wind energy applications, from different regional and global ensemble prediction systems (EPSs) at six measurement towers in central Europe and to evaluate the benefits of combining single-model ensembles into multimodel ensembles. The global 51-member EPS from the European Centre for Medium-Range Weather Forecasts (ECMWF EPS) is compared against the Consortium for Small-Scale Modelling?s (COSMO) limited-area 16-member EPS (COSMO-LEPS) and a regional, high-resolution 20-member EPS centered over Germany (COSMO-DE EPS). The ensemble forecasts are calibrated with univariate (wind speed) ensemble model output statistics (EMOS) and bivariate (wind vector) recursive and adaptive calibration (AUV). The multimodel ensembles are constructed by pooling together raw or best-calibrated ensemble forecasts. An additional postprocessing of these multimodel ensembles with both EMOS and AUV is also tested. The best-performing calibration methodology for ECMWF EPS is AUV, while EMOS performs better than AUV for the calibration of COSMO-DE EPS. COSMO-LEPS has similar skill when calibrated with both EMOS and AUV. The AUV ECMWF EPS outperforms the EMOS COSMO-LEPS and COSMO-DE EPS for deterministic and probabilistic wind speed forecast skill. For most thresholds, ECMWF EPS has a comparable reliability and sharpness but higher discrimination ability. Multimodel ensembles, which are constructed by pooling together the best-calibrated EPSs, improve the skill relative to the AUV ECMWF EPS. An analysis of the error correlation among the EPSs indicates that multimodel ensemble skill can be considerably higher when the error correlation is low.
    publisherAmerican Meteorological Society
    titleComparison and Combination of Regional and Global Ensemble Prediction Systems for Probabilistic Predictions of Hub-Height Wind Speed
    typeJournal Paper
    journal volume30
    journal issue5
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF-D-15-0021.1
    journal fristpage1234
    journal lastpage1253
    treeWeather and Forecasting:;2015:;volume( 030 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian