YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of WRF Cloud Microphysics Schemes Using Radar Observations

    Source: Weather and Forecasting:;2015:;volume( 030 ):;issue: 006::page 1571
    Author:
    Min, Ki-Hong
    ,
    Choo, Sunhee
    ,
    Lee, Daehyung
    ,
    Lee, Gyuwon
    DOI: 10.1175/WAF-D-14-00095.1
    Publisher: American Meteorological Society
    Abstract: he Korea Meteorological Administration (KMA) implemented a 10-yr project to develop its own global model (GM) by 2020. To reflect the complex topography and unique weather characteristics of the Korean Peninsula, a high-resolution model with accurate physics and input data is required. The WRF single-moment 6-class microphysics scheme (WSM6) and WRF double-moment 6-class microphysics scheme (WDM6) that will be implemented in the Korea GM (KGM) are evaluated. Comparisons of the contoured frequency by altitude diagram (CFAD), time?height cross sections, and vertical profiles of hydrometeors are utilized to assess the two schemes in simulating summer monsoon and convective precipitation cases over the Korean Peninsula during 2011. The results show that WSM6 and WDM6 overestimate the height of the melting level and bright band as compared to radar observations. However, the accuracy of WDM6 is in better agreement with radar observations. This is attributed to the difference in the sedimentation process simulated by the additional second-moment total number concentrations of liquid-phase particles in WDM6. WDM6 creates larger raindrops and higher relative humidity beneath the melting layer, allowing the scheme to simulate a more realistic reflectivity profile than WSM6 for the summer monsoon case. However, for the convective case, both schemes underestimate the precipitation and there is resolution dependence in the WRF Model?s ability to simulate convective precipitation.
    • Download: (4.790Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of WRF Cloud Microphysics Schemes Using Radar Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231803
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorMin, Ki-Hong
    contributor authorChoo, Sunhee
    contributor authorLee, Daehyung
    contributor authorLee, Gyuwon
    date accessioned2017-06-09T17:36:45Z
    date available2017-06-09T17:36:45Z
    date copyright2015/12/01
    date issued2015
    identifier issn0882-8156
    identifier otherams-88064.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231803
    description abstracthe Korea Meteorological Administration (KMA) implemented a 10-yr project to develop its own global model (GM) by 2020. To reflect the complex topography and unique weather characteristics of the Korean Peninsula, a high-resolution model with accurate physics and input data is required. The WRF single-moment 6-class microphysics scheme (WSM6) and WRF double-moment 6-class microphysics scheme (WDM6) that will be implemented in the Korea GM (KGM) are evaluated. Comparisons of the contoured frequency by altitude diagram (CFAD), time?height cross sections, and vertical profiles of hydrometeors are utilized to assess the two schemes in simulating summer monsoon and convective precipitation cases over the Korean Peninsula during 2011. The results show that WSM6 and WDM6 overestimate the height of the melting level and bright band as compared to radar observations. However, the accuracy of WDM6 is in better agreement with radar observations. This is attributed to the difference in the sedimentation process simulated by the additional second-moment total number concentrations of liquid-phase particles in WDM6. WDM6 creates larger raindrops and higher relative humidity beneath the melting layer, allowing the scheme to simulate a more realistic reflectivity profile than WSM6 for the summer monsoon case. However, for the convective case, both schemes underestimate the precipitation and there is resolution dependence in the WRF Model?s ability to simulate convective precipitation.
    publisherAmerican Meteorological Society
    titleEvaluation of WRF Cloud Microphysics Schemes Using Radar Observations
    typeJournal Paper
    journal volume30
    journal issue6
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF-D-14-00095.1
    journal fristpage1571
    journal lastpage1589
    treeWeather and Forecasting:;2015:;volume( 030 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian