YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Circulation Structure of Summer Heavy Rainfall in Central North China

    Source: Weather and Forecasting:;2014:;volume( 030 ):;issue: 001::page 238
    Author:
    Sun, Wei
    ,
    Yu, Rucong
    ,
    Li, Jian
    ,
    Yuan, Weihua
    DOI: 10.1175/WAF-D-14-00046.1
    Publisher: American Meteorological Society
    Abstract: ased on daily rainfall observations and Japanese 25-year Reanalysis Project data during ~1981?2010, a three-dimensional circulation structure that formed before heavy summer rainfall in central north China (CNC) is revealed in this study. Composite analyses of circulation in advance of 225 heavy rain days show that the circulation structure is characterized by a remarkable upper-tropospheric warm anomaly (UTWA), which covers most of northern China with a center at ~300 hPa. Under hydrostatic and geostrophic equilibriums, the UTWA contributes to the generation of an anticyclonic (cyclonic) anomaly above (below). The anticyclonic anomaly strengthens (weakens) westerly winds to the north (south) of the warm center and pushes the high-level westerly jet to the north. The cyclonic anomaly deepens the trough upstream of CNC and intensifies lower southwesterly winds to the mideast of the warm center. As a result, the northerly stretched high-level jet produces upper divergence in its right-front side and the intensified southwesterly winds induce lower moisture convergence in its left-front side, causing heavy rainfall in CNC. Correlation analyses further confirm the close connections between UTWA and circulation in the upper and lower troposphere. The correlation coefficients between UTWA and the upper geopotential height, upper westerly jet, and lower southerly flow reach 0.95, 0.70, and 0.39, implying that the two critical factors leading to intense rainfall in CNC, the high-level jet and the low-level southerly flow, are closely connected with the UTWA. Consequently, in the future analyses and forecasts of heavy rainfall over northern China, more attention should be paid to the temperature in the upper troposphere.
    • Download: (4.720Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Circulation Structure of Summer Heavy Rainfall in Central North China

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231772
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorSun, Wei
    contributor authorYu, Rucong
    contributor authorLi, Jian
    contributor authorYuan, Weihua
    date accessioned2017-06-09T17:36:39Z
    date available2017-06-09T17:36:39Z
    date copyright2015/02/01
    date issued2014
    identifier issn0882-8156
    identifier otherams-88036.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231772
    description abstractased on daily rainfall observations and Japanese 25-year Reanalysis Project data during ~1981?2010, a three-dimensional circulation structure that formed before heavy summer rainfall in central north China (CNC) is revealed in this study. Composite analyses of circulation in advance of 225 heavy rain days show that the circulation structure is characterized by a remarkable upper-tropospheric warm anomaly (UTWA), which covers most of northern China with a center at ~300 hPa. Under hydrostatic and geostrophic equilibriums, the UTWA contributes to the generation of an anticyclonic (cyclonic) anomaly above (below). The anticyclonic anomaly strengthens (weakens) westerly winds to the north (south) of the warm center and pushes the high-level westerly jet to the north. The cyclonic anomaly deepens the trough upstream of CNC and intensifies lower southwesterly winds to the mideast of the warm center. As a result, the northerly stretched high-level jet produces upper divergence in its right-front side and the intensified southwesterly winds induce lower moisture convergence in its left-front side, causing heavy rainfall in CNC. Correlation analyses further confirm the close connections between UTWA and circulation in the upper and lower troposphere. The correlation coefficients between UTWA and the upper geopotential height, upper westerly jet, and lower southerly flow reach 0.95, 0.70, and 0.39, implying that the two critical factors leading to intense rainfall in CNC, the high-level jet and the low-level southerly flow, are closely connected with the UTWA. Consequently, in the future analyses and forecasts of heavy rainfall over northern China, more attention should be paid to the temperature in the upper troposphere.
    publisherAmerican Meteorological Society
    titleThree-Dimensional Circulation Structure of Summer Heavy Rainfall in Central North China
    typeJournal Paper
    journal volume30
    journal issue1
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF-D-14-00046.1
    journal fristpage238
    journal lastpage250
    treeWeather and Forecasting:;2014:;volume( 030 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian