YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Trajectory Approach to Analyzing the Ingredients Associated with Heavy Winter Storms in Central North Carolina

    Source: Weather and Forecasting:;2013:;volume( 028 ):;issue: 003::page 647
    Author:
    Fuhrmann, Christopher M.
    ,
    Konrad, Charles E.
    DOI: 10.1175/WAF-D-12-00079.1
    Publisher: American Meteorological Society
    Abstract: inter storms, namely snowstorms and ice storms, are a major hazard and forecasting challenge across central North Carolina. This study employed a trajectory approach to analyze the ingredients (i.e., temperature, moisture, and lift) associated with heavy snowstorms and ice storms that occurred within the Raleigh, North Carolina, National Weather Service forecast region from 2000 to 2010. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) tool was used to calculate 72-h backward (i.e., upstream) air parcel trajectories from three critical vertical pressure levels at the time and location of heaviest precipitation for each storm. Analysis of composite trajectories revealed the source regions and meteorological properties of air parcels associated with heavy winter storms. Adiabatic and diabatic contributions to air parcel temperature and moisture content were also estimated along each trajectory to assess the physical processes connected with heavy winter precipitation in the region. Results indicate that diabatic warming and cooling contribute significantly to the vertical temperature profile during heavy winter storms and therefore dictate the resulting precipitation type. The main source of diabatic warming is fluxes of sensible and latent heat within the marine atmospheric boundary layer over the Gulf Stream. These fluxes contribute to a warming and moistening of air parcels associated with heavy ice storms. In contrast, heavy snowstorms are characterized by diabatic cooling in the lower troposphere above the marine atmospheric boundary layer. The most significant moisture source for heavy snowfall is the Caribbean Sea, while heavy ice storms entrain moisture from the Gulf of Mexico and Gulf Stream region near the Carolina coast.
    • Download: (4.526Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Trajectory Approach to Analyzing the Ingredients Associated with Heavy Winter Storms in Central North Carolina

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231604
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorFuhrmann, Christopher M.
    contributor authorKonrad, Charles E.
    date accessioned2017-06-09T17:36:07Z
    date available2017-06-09T17:36:07Z
    date copyright2013/06/01
    date issued2013
    identifier issn0882-8156
    identifier otherams-87886.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231604
    description abstractinter storms, namely snowstorms and ice storms, are a major hazard and forecasting challenge across central North Carolina. This study employed a trajectory approach to analyze the ingredients (i.e., temperature, moisture, and lift) associated with heavy snowstorms and ice storms that occurred within the Raleigh, North Carolina, National Weather Service forecast region from 2000 to 2010. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) tool was used to calculate 72-h backward (i.e., upstream) air parcel trajectories from three critical vertical pressure levels at the time and location of heaviest precipitation for each storm. Analysis of composite trajectories revealed the source regions and meteorological properties of air parcels associated with heavy winter storms. Adiabatic and diabatic contributions to air parcel temperature and moisture content were also estimated along each trajectory to assess the physical processes connected with heavy winter precipitation in the region. Results indicate that diabatic warming and cooling contribute significantly to the vertical temperature profile during heavy winter storms and therefore dictate the resulting precipitation type. The main source of diabatic warming is fluxes of sensible and latent heat within the marine atmospheric boundary layer over the Gulf Stream. These fluxes contribute to a warming and moistening of air parcels associated with heavy ice storms. In contrast, heavy snowstorms are characterized by diabatic cooling in the lower troposphere above the marine atmospheric boundary layer. The most significant moisture source for heavy snowfall is the Caribbean Sea, while heavy ice storms entrain moisture from the Gulf of Mexico and Gulf Stream region near the Carolina coast.
    publisherAmerican Meteorological Society
    titleA Trajectory Approach to Analyzing the Ingredients Associated with Heavy Winter Storms in Central North Carolina
    typeJournal Paper
    journal volume28
    journal issue3
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF-D-12-00079.1
    journal fristpage647
    journal lastpage667
    treeWeather and Forecasting:;2013:;volume( 028 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian