YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Relationship between Total Cloud Lightning Behavior and Radar-Derived Thunderstorm Structure

    Source: Weather and Forecasting:;2012:;volume( 028 ):;issue: 001::page 237
    Author:
    Metzger, Eric
    ,
    Nuss, Wendell A.
    DOI: 10.1175/WAF-D-11-00157.1
    Publisher: American Meteorological Society
    Abstract: otal lightning detection systems have been in development since the mid-1980s and deployed in several areas around the world. Previous studies on total lightning found intra- and intercloud lightning (IC) activity tends to fluctuate significantly during the lifetime of thunderstorms and have indicated that lightning jumps or rapid changes in lightning flash rates are closely linked to changes in the vertical integrated liquid (VIL) reading on the National Weather Service?s Weather Surveillance Radar-1988 Doppler (WSR-88D) systems. This study examines the total lightning and its relationship to WSR-88D signatures used operationally to determine thunderstorm severity to highlight the potential benefit of a combined forecast approach. Lightning and thunderstorm data from the Dallas?Fort Worth, Texas, and Tucson, Arizona, areas from 2006 to 2009, were used to relate total lightning behavior and radar interrogation techniques. The results indicate that lightning jumps can be classified into severe wind, hail, or mixed-type jumps based on the behavior of various radar-based parameters. In 25 of 34 hail-type jumps and in 18 of 20 wind-type jumps, a characteristic change in cloud-to-ground (CG) versus IC lightning flash rates occurred prior to the report of severe weather. For hail-type jumps, IC flash rates increased, while CG flash rates were steady or decreased. For wind-type jumps, CG flash rates increased, while IC flash rates either increased (12 of 18) or were steady or decreased (6 of 18). Although not every lightning jump resulted in a severe weather report, the characteristic behavior in flash rates adds information to radar-based approaches for nowcasting the severe weather type.
    • Download: (1.956Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Relationship between Total Cloud Lightning Behavior and Radar-Derived Thunderstorm Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231550
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorMetzger, Eric
    contributor authorNuss, Wendell A.
    date accessioned2017-06-09T17:35:55Z
    date available2017-06-09T17:35:55Z
    date copyright2013/02/01
    date issued2012
    identifier issn0882-8156
    identifier otherams-87837.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231550
    description abstractotal lightning detection systems have been in development since the mid-1980s and deployed in several areas around the world. Previous studies on total lightning found intra- and intercloud lightning (IC) activity tends to fluctuate significantly during the lifetime of thunderstorms and have indicated that lightning jumps or rapid changes in lightning flash rates are closely linked to changes in the vertical integrated liquid (VIL) reading on the National Weather Service?s Weather Surveillance Radar-1988 Doppler (WSR-88D) systems. This study examines the total lightning and its relationship to WSR-88D signatures used operationally to determine thunderstorm severity to highlight the potential benefit of a combined forecast approach. Lightning and thunderstorm data from the Dallas?Fort Worth, Texas, and Tucson, Arizona, areas from 2006 to 2009, were used to relate total lightning behavior and radar interrogation techniques. The results indicate that lightning jumps can be classified into severe wind, hail, or mixed-type jumps based on the behavior of various radar-based parameters. In 25 of 34 hail-type jumps and in 18 of 20 wind-type jumps, a characteristic change in cloud-to-ground (CG) versus IC lightning flash rates occurred prior to the report of severe weather. For hail-type jumps, IC flash rates increased, while CG flash rates were steady or decreased. For wind-type jumps, CG flash rates increased, while IC flash rates either increased (12 of 18) or were steady or decreased (6 of 18). Although not every lightning jump resulted in a severe weather report, the characteristic behavior in flash rates adds information to radar-based approaches for nowcasting the severe weather type.
    publisherAmerican Meteorological Society
    titleThe Relationship between Total Cloud Lightning Behavior and Radar-Derived Thunderstorm Structure
    typeJournal Paper
    journal volume28
    journal issue1
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF-D-11-00157.1
    journal fristpage237
    journal lastpage253
    treeWeather and Forecasting:;2012:;volume( 028 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian