YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predicting Cloud-to-Ground and Intracloud Lightning in Weather Forecast Models

    Source: Weather and Forecasting:;2012:;volume( 027 ):;issue: 006::page 1470
    Author:
    Lynn, Barry H.
    ,
    Yair, Yoav
    ,
    Price, Colin
    ,
    Kelman, Guy
    ,
    Clark, Adam J.
    DOI: 10.1175/WAF-D-11-00144.1
    Publisher: American Meteorological Society
    Abstract: new prognostic, spatially and temporally dependent variable is introduced to the Weather Research and Forecasting Model (WRF). This variable is called the potential electrical energy (Ep). It was used to predict the dynamic contribution of the grid-scale-resolved microphysical and vertical velocity fields to the production of cloud-to-ground and intracloud lightning in convection-allowing forecasts. The source of Ep is assumed to be the noninductive charge separation process involving collisions of graupel and ice particles in the presence of supercooled liquid water. The Ep dissipates when it exceeds preassigned threshold values and lightning is generated. An analysis of four case studies is presented and analyzed. On the 4-km simulation grid, a single cloud-to-ground lightning event was forecast with about equal values of probability of detection (POD) and false alarm ratio (FAR). However, when lighting was integrated onto 12-km and then 36-km grid overlays, there was a large improvement in the forecast skill, and as many as 10 cloud-to-ground lighting events were well forecast on the 36-km grid. The impact of initial conditions on forecast accuracy is briefly discussed, including an evaluation of the scheme in wintertime, when lightning activity is weaker. The dynamic algorithm forecasts are also contrasted with statistical lightning forecasts and differences are noted. The scheme is being used operationally with the Rapid Refresh (13 km) data; the skill scores in these operational runs were very good in clearly defined convective situations.
    • Download: (2.218Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predicting Cloud-to-Ground and Intracloud Lightning in Weather Forecast Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231538
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorLynn, Barry H.
    contributor authorYair, Yoav
    contributor authorPrice, Colin
    contributor authorKelman, Guy
    contributor authorClark, Adam J.
    date accessioned2017-06-09T17:35:53Z
    date available2017-06-09T17:35:53Z
    date copyright2012/12/01
    date issued2012
    identifier issn0882-8156
    identifier otherams-87826.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231538
    description abstractnew prognostic, spatially and temporally dependent variable is introduced to the Weather Research and Forecasting Model (WRF). This variable is called the potential electrical energy (Ep). It was used to predict the dynamic contribution of the grid-scale-resolved microphysical and vertical velocity fields to the production of cloud-to-ground and intracloud lightning in convection-allowing forecasts. The source of Ep is assumed to be the noninductive charge separation process involving collisions of graupel and ice particles in the presence of supercooled liquid water. The Ep dissipates when it exceeds preassigned threshold values and lightning is generated. An analysis of four case studies is presented and analyzed. On the 4-km simulation grid, a single cloud-to-ground lightning event was forecast with about equal values of probability of detection (POD) and false alarm ratio (FAR). However, when lighting was integrated onto 12-km and then 36-km grid overlays, there was a large improvement in the forecast skill, and as many as 10 cloud-to-ground lighting events were well forecast on the 36-km grid. The impact of initial conditions on forecast accuracy is briefly discussed, including an evaluation of the scheme in wintertime, when lightning activity is weaker. The dynamic algorithm forecasts are also contrasted with statistical lightning forecasts and differences are noted. The scheme is being used operationally with the Rapid Refresh (13 km) data; the skill scores in these operational runs were very good in clearly defined convective situations.
    publisherAmerican Meteorological Society
    titlePredicting Cloud-to-Ground and Intracloud Lightning in Weather Forecast Models
    typeJournal Paper
    journal volume27
    journal issue6
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF-D-11-00144.1
    journal fristpage1470
    journal lastpage1488
    treeWeather and Forecasting:;2012:;volume( 027 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian