YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Sensitivity of Numerical Forecasts to Convective Parameterization: A Case Study of the 17 February 2004 East Coast Cyclone

    Source: Weather and Forecasting:;2006:;volume( 021 ):;issue: 004::page 465
    Author:
    Mahoney, Kelly M.
    ,
    Lackmann, Gary M.
    DOI: 10.1175/WAF937.1
    Publisher: American Meteorological Society
    Abstract: The sensitivity of numerical model forecasts of coastal cyclogenesis and frontogenesis to the choice of model cumulus parameterization (CP) scheme is examined for the 17 February 2004 southeastern U.S. winter weather event. This event featured a complex synoptic and mesoscale environment, as the presence of cold-air damming, a developing coastal surface cyclone, and an upper-level trough combined to present a daunting winter weather forecast scenario. The operational forecast challenge was further complicated by erratic numerical model predictions. The most poignant area of disagreement between model runs was the treatment of a coastal cyclone and an associated coastal front, features that would affect the location and timing of precipitation and influence the precipitation type. At the time of the event, it was hypothesized that the Betts?Miller?Janji? (BMJ) CP scheme was dictating the location and intensity of the initial coastal cyclone center in operational Eta Model forecasts. For this reason, forecasts for this case were rerun with the workstation Eta Model using the Kain?Fritsch (KF) CP scheme to further examine the sensitivity to this parameterization choice. Results confirm that the model CP scheme played a major role in the forecast for this case, affecting the quantitative precipitation forecast as well as the strength, location, and structure of coastal cyclogenesis and coastal frontogenesis. The Eta Model forecast using the KF CP scheme produced a relatively uniform distribution of convective precipitation oriented along the axis of an inverted trough and strong coastal front. In contrast, the BMJ forecasts resulted in a weaker coastal front and the development of multiple distinct closed cyclonic circulations in association with more localized convective precipitation centers. An additional BMJ forecast in which the shallow mixing component of the scheme was disabled bore a closer semblance to the KF forecasts relative to the original BMJ forecast. Suggestions are provided to facilitate the identification of CP-driven cyclones using standard operational model output parameters.
    • Download: (5.975Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Sensitivity of Numerical Forecasts to Convective Parameterization: A Case Study of the 17 February 2004 East Coast Cyclone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231315
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorMahoney, Kelly M.
    contributor authorLackmann, Gary M.
    date accessioned2017-06-09T17:35:10Z
    date available2017-06-09T17:35:10Z
    date copyright2006/08/01
    date issued2006
    identifier issn0882-8156
    identifier otherams-87625.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231315
    description abstractThe sensitivity of numerical model forecasts of coastal cyclogenesis and frontogenesis to the choice of model cumulus parameterization (CP) scheme is examined for the 17 February 2004 southeastern U.S. winter weather event. This event featured a complex synoptic and mesoscale environment, as the presence of cold-air damming, a developing coastal surface cyclone, and an upper-level trough combined to present a daunting winter weather forecast scenario. The operational forecast challenge was further complicated by erratic numerical model predictions. The most poignant area of disagreement between model runs was the treatment of a coastal cyclone and an associated coastal front, features that would affect the location and timing of precipitation and influence the precipitation type. At the time of the event, it was hypothesized that the Betts?Miller?Janji? (BMJ) CP scheme was dictating the location and intensity of the initial coastal cyclone center in operational Eta Model forecasts. For this reason, forecasts for this case were rerun with the workstation Eta Model using the Kain?Fritsch (KF) CP scheme to further examine the sensitivity to this parameterization choice. Results confirm that the model CP scheme played a major role in the forecast for this case, affecting the quantitative precipitation forecast as well as the strength, location, and structure of coastal cyclogenesis and coastal frontogenesis. The Eta Model forecast using the KF CP scheme produced a relatively uniform distribution of convective precipitation oriented along the axis of an inverted trough and strong coastal front. In contrast, the BMJ forecasts resulted in a weaker coastal front and the development of multiple distinct closed cyclonic circulations in association with more localized convective precipitation centers. An additional BMJ forecast in which the shallow mixing component of the scheme was disabled bore a closer semblance to the KF forecasts relative to the original BMJ forecast. Suggestions are provided to facilitate the identification of CP-driven cyclones using standard operational model output parameters.
    publisherAmerican Meteorological Society
    titleThe Sensitivity of Numerical Forecasts to Convective Parameterization: A Case Study of the 17 February 2004 East Coast Cyclone
    typeJournal Paper
    journal volume21
    journal issue4
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF937.1
    journal fristpage465
    journal lastpage488
    treeWeather and Forecasting:;2006:;volume( 021 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian