YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Introduction to the Near–Real–Time QuikSCAT Data

    Source: Weather and Forecasting:;2005:;volume( 020 ):;issue: 004::page 476
    Author:
    Hoffman, Ross N.
    ,
    Leidner, S. Mark
    DOI: 10.1175/WAF841.1
    Publisher: American Meteorological Society
    Abstract: The NASA Quick Scatterometer (QuikSCAT) satellite carries the SeaWinds instrument, the first satellite-borne scanning radar scatterometer. QuikSCAT, which was launched on 19 June 1999, is designed to provide accurate ocean surface winds in all conditions except for moderate to heavy rain (i.e., except for vertically integrated rain rate >2.0 km mm h?1, the value used to tune the SeaWinds rain flag). QuikSCAT data are invaluable in providing high-quality, high-resolution winds to detect and locate precisely significant meteorological features and to produce accurate ocean surface wind analyses. QuikSCAT has an 1800-km-wide swath. A representative swath of data in the North Atlantic at 2200 UTC 28 September 2000, which contains several interesting features, reveals some of the capabilities of QuikSCAT. Careful quality control is vital for flagging data that are affected by rain and for flagging errors during ambiguity removal. In addition, an understanding of the instrument and algorithm characteristics provides insights into the factors controlling data quality for QuikSCAT. For example data quality is reduced for low wind speeds, and for locations either close to nadir or to the swath edges. The special data characteristics of the QuikSCAT scatterometer are revealed by examining the likelihood or objective function. The objective function is equal to the sum of squared scaled differences between observed and simulated normalized reflected radar power. The authors present typical examples and discuss the associated data quality concerns for different parts of the swath, for different wind speeds, and for rain versus no rain.
    • Download: (2.516Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Introduction to the Near–Real–Time QuikSCAT Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231205
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorHoffman, Ross N.
    contributor authorLeidner, S. Mark
    date accessioned2017-06-09T17:34:54Z
    date available2017-06-09T17:34:54Z
    date copyright2005/08/01
    date issued2005
    identifier issn0882-8156
    identifier otherams-87526.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231205
    description abstractThe NASA Quick Scatterometer (QuikSCAT) satellite carries the SeaWinds instrument, the first satellite-borne scanning radar scatterometer. QuikSCAT, which was launched on 19 June 1999, is designed to provide accurate ocean surface winds in all conditions except for moderate to heavy rain (i.e., except for vertically integrated rain rate >2.0 km mm h?1, the value used to tune the SeaWinds rain flag). QuikSCAT data are invaluable in providing high-quality, high-resolution winds to detect and locate precisely significant meteorological features and to produce accurate ocean surface wind analyses. QuikSCAT has an 1800-km-wide swath. A representative swath of data in the North Atlantic at 2200 UTC 28 September 2000, which contains several interesting features, reveals some of the capabilities of QuikSCAT. Careful quality control is vital for flagging data that are affected by rain and for flagging errors during ambiguity removal. In addition, an understanding of the instrument and algorithm characteristics provides insights into the factors controlling data quality for QuikSCAT. For example data quality is reduced for low wind speeds, and for locations either close to nadir or to the swath edges. The special data characteristics of the QuikSCAT scatterometer are revealed by examining the likelihood or objective function. The objective function is equal to the sum of squared scaled differences between observed and simulated normalized reflected radar power. The authors present typical examples and discuss the associated data quality concerns for different parts of the swath, for different wind speeds, and for rain versus no rain.
    publisherAmerican Meteorological Society
    titleAn Introduction to the Near–Real–Time QuikSCAT Data
    typeJournal Paper
    journal volume20
    journal issue4
    journal titleWeather and Forecasting
    identifier doi10.1175/WAF841.1
    journal fristpage476
    journal lastpage493
    treeWeather and Forecasting:;2005:;volume( 020 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian