YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Stochastic Perturbed Parameterization Tendency Scheme for Diffusion (SPPTD) and Its Application to an Idealized Supercell Simulation

    Source: Monthly Weather Review:;2017:;volume( 145 ):;issue: 006::page 2119
    Author:
    Qiao, Xiaoshi
    ,
    Wang, Shizhang
    ,
    Min, Jinzhong
    DOI: 10.1175/MWR-D-16-0307.1
    Publisher: American Meteorological Society
    Abstract: iffusion plays an important role in supercell simulations. A stochastically perturbed parameterization tendency scheme for diffusion (SPPTD) is developed to incorporate diffusive uncertainties in ensemble forecasts. This scheme follows the same procedure as the previously published stochastically perturbed parameterization tendencies (SPPT) scheme but uses a recursive filter to generate smooth perturbations. It also employs horizontal and vertical localization to retain the impact of perturbation in areas with strong shear. Three additional restrictions are added for the sake of integration stability; these restrictions determine the area and amplitude of the perturbation and the situation to suspend SPPTD.The performance of this scheme is examined by using an idealized supercell storm. The model errors are simulated using different resolutions in the truth run (1 km) and ensemble forecasts (2 km). The results indicate that the ensemble forecasts using SPPTD encompass the intensity and displacement of maximum updraft helicity in the truth run. This scheme yields better results than can be obtained using initial perturbations or larger computational mixing coefficients.The sensitivity of SPPTD to each of its parameters is also examined. The results indicate that the optimal horizontal and temporal scales for SPPTD are 40 km and 30 min, respectively. Moderately adjusting the spatiotemporal scale by 10 km or 10 min does not significantly change the SPPTD performance. In this case study, an ensemble size of 20 is sufficient. Perturbing the diffusion terms of all variables using the same approach does not provide additional benefits other than that of selected variables and thus requires further study.
    • Download: (2.956Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Stochastic Perturbed Parameterization Tendency Scheme for Diffusion (SPPTD) and Its Application to an Idealized Supercell Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231077
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorQiao, Xiaoshi
    contributor authorWang, Shizhang
    contributor authorMin, Jinzhong
    date accessioned2017-06-09T17:34:30Z
    date available2017-06-09T17:34:30Z
    date copyright2017/06/01
    date issued2017
    identifier issn0027-0644
    identifier otherams-87411.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231077
    description abstractiffusion plays an important role in supercell simulations. A stochastically perturbed parameterization tendency scheme for diffusion (SPPTD) is developed to incorporate diffusive uncertainties in ensemble forecasts. This scheme follows the same procedure as the previously published stochastically perturbed parameterization tendencies (SPPT) scheme but uses a recursive filter to generate smooth perturbations. It also employs horizontal and vertical localization to retain the impact of perturbation in areas with strong shear. Three additional restrictions are added for the sake of integration stability; these restrictions determine the area and amplitude of the perturbation and the situation to suspend SPPTD.The performance of this scheme is examined by using an idealized supercell storm. The model errors are simulated using different resolutions in the truth run (1 km) and ensemble forecasts (2 km). The results indicate that the ensemble forecasts using SPPTD encompass the intensity and displacement of maximum updraft helicity in the truth run. This scheme yields better results than can be obtained using initial perturbations or larger computational mixing coefficients.The sensitivity of SPPTD to each of its parameters is also examined. The results indicate that the optimal horizontal and temporal scales for SPPTD are 40 km and 30 min, respectively. Moderately adjusting the spatiotemporal scale by 10 km or 10 min does not significantly change the SPPTD performance. In this case study, an ensemble size of 20 is sufficient. Perturbing the diffusion terms of all variables using the same approach does not provide additional benefits other than that of selected variables and thus requires further study.
    publisherAmerican Meteorological Society
    titleA Stochastic Perturbed Parameterization Tendency Scheme for Diffusion (SPPTD) and Its Application to an Idealized Supercell Simulation
    typeJournal Paper
    journal volume145
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-16-0307.1
    journal fristpage2119
    journal lastpage2139
    treeMonthly Weather Review:;2017:;volume( 145 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian