YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Role of Convectively Generated Gravity Waves on Convective Initiation: A Case Study

    Source: Monthly Weather Review:;2016:;volume( 145 ):;issue: 001::page 335
    Author:
    Su, Tao
    ,
    Zhai, Guoqing
    DOI: 10.1175/MWR-D-16-0196.1
    Publisher: American Meteorological Society
    Abstract: case study of a convection initiation (CI) event involving a mesoscale gravity wave is presented. This severe convection event occurred in east China on 5 June 2009. High-frequency automatic weather station (AWS) data, visible satellite data, and Doppler radar data were combined to depict the features of the gravity wave and the development of several convection centers. The gravity wave was manifested by a surface pressure dip and surface wind shift propagating westward away from the early convection. The pressure dip propagated at a speed of >30 m s?1, which is comparable with that in previous observational studies of convectively generated gravity waves. A special focus is on the initiation of a deep convection cell in Anhui Province, which resulted in 25 deaths. Surface observations showed two precursors before CI, including a convergence line and wind shift at the eastern end of the convergence line. High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to examine the structure of the gravity waves and forecast CI processes. The model reproduced the observed features of the gravity wave and the precursors before CI. Three-dimensional model results showed that CI occurred at the intersection between a convergence line and the gravity wave. The relationships between the wind shift and the pressure drop are consistent with polarization relation in ducted gravity waves. As the updraft of the gravity wave intersected with the convergence line, the low-level updraft strengthened and led to CI. The gravity wave, which had stronger updraft than downdraft, suggested a positive contribution to CI.
    • Download: (12.04Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Role of Convectively Generated Gravity Waves on Convective Initiation: A Case Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4231014
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSu, Tao
    contributor authorZhai, Guoqing
    date accessioned2017-06-09T17:34:14Z
    date available2017-06-09T17:34:14Z
    date copyright2017/01/01
    date issued2016
    identifier issn0027-0644
    identifier otherams-87354.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231014
    description abstractcase study of a convection initiation (CI) event involving a mesoscale gravity wave is presented. This severe convection event occurred in east China on 5 June 2009. High-frequency automatic weather station (AWS) data, visible satellite data, and Doppler radar data were combined to depict the features of the gravity wave and the development of several convection centers. The gravity wave was manifested by a surface pressure dip and surface wind shift propagating westward away from the early convection. The pressure dip propagated at a speed of >30 m s?1, which is comparable with that in previous observational studies of convectively generated gravity waves. A special focus is on the initiation of a deep convection cell in Anhui Province, which resulted in 25 deaths. Surface observations showed two precursors before CI, including a convergence line and wind shift at the eastern end of the convergence line. High-resolution numerical simulations with the Weather Research and Forecasting (WRF) Model were used to examine the structure of the gravity waves and forecast CI processes. The model reproduced the observed features of the gravity wave and the precursors before CI. Three-dimensional model results showed that CI occurred at the intersection between a convergence line and the gravity wave. The relationships between the wind shift and the pressure drop are consistent with polarization relation in ducted gravity waves. As the updraft of the gravity wave intersected with the convergence line, the low-level updraft strengthened and led to CI. The gravity wave, which had stronger updraft than downdraft, suggested a positive contribution to CI.
    publisherAmerican Meteorological Society
    titleThe Role of Convectively Generated Gravity Waves on Convective Initiation: A Case Study
    typeJournal Paper
    journal volume145
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-16-0196.1
    journal fristpage335
    journal lastpage359
    treeMonthly Weather Review:;2016:;volume( 145 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian