YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wind Structure Discrepancies between Two Best Track Datasets for Western North Pacific Tropical Cyclones

    Source: Monthly Weather Review:;2016:;volume( 144 ):;issue: 012::page 4533
    Author:
    Song, Jinjie
    ,
    Klotzbach, Philip J.
    DOI: 10.1175/MWR-D-16-0163.1
    Publisher: American Meteorological Society
    Abstract: ymmetric and wavenumber-1 asymmetric characteristics of western North Pacific tropical cyclone (TC) outer wind structures are compared between best tracks from the Joint Typhoon Warning Center (JTWC) and the Japan Meteorological Agency (JMA) from 2004 to 2014 as well as the Multiplatform Tropical Cyclone Surface Wind Analysis (MTCSWA) product from 2007 to 2014. Significant linear relationships of averaged wind radii are obtained among datasets, in which both gale-force and storm-force wind radii are generally estimated slightly smaller (much larger) by JTWC (JMA) than by MTCSWA. These correlations are strongly related to TC intensity relationships discussed in earlier work. Moreover, JTWC (JMA) on average represents a smaller (greater) derived shape parameter than MTCSWA does, implying that JTWC (JMA) typically assesses a more compact (less compact) storm than MTCSWA. For the wavenumber-1 asymmetry, large differences among datasets are found regardless of the magnitude or the direction of the longest radius. JTWC estimates more asymmetric storms than JMA, and it provides greater wavenumber-1 asymmetry magnitudes on average. Asymmetric storms are most frequently oriented toward the east, northeast, and north in JTWC and MTCSWA, whereas they are most frequently oriented toward the southeast, east, and northeast in JMA. The direction of the longest gale-force (storm force) wind radius in JTWC is statistically rotated 18° (32°) clockwise to that in JMA. Although the wind radii in JTWC are of higher quality than those in JMA when using MTCSWA as a baseline, there remains a need to provide a consistent and reliable wind radii estimating process among operational centers.
    • Download: (3.719Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wind Structure Discrepancies between Two Best Track Datasets for Western North Pacific Tropical Cyclones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230997
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSong, Jinjie
    contributor authorKlotzbach, Philip J.
    date accessioned2017-06-09T17:34:11Z
    date available2017-06-09T17:34:11Z
    date copyright2016/12/01
    date issued2016
    identifier issn0027-0644
    identifier otherams-87339.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230997
    description abstractymmetric and wavenumber-1 asymmetric characteristics of western North Pacific tropical cyclone (TC) outer wind structures are compared between best tracks from the Joint Typhoon Warning Center (JTWC) and the Japan Meteorological Agency (JMA) from 2004 to 2014 as well as the Multiplatform Tropical Cyclone Surface Wind Analysis (MTCSWA) product from 2007 to 2014. Significant linear relationships of averaged wind radii are obtained among datasets, in which both gale-force and storm-force wind radii are generally estimated slightly smaller (much larger) by JTWC (JMA) than by MTCSWA. These correlations are strongly related to TC intensity relationships discussed in earlier work. Moreover, JTWC (JMA) on average represents a smaller (greater) derived shape parameter than MTCSWA does, implying that JTWC (JMA) typically assesses a more compact (less compact) storm than MTCSWA. For the wavenumber-1 asymmetry, large differences among datasets are found regardless of the magnitude or the direction of the longest radius. JTWC estimates more asymmetric storms than JMA, and it provides greater wavenumber-1 asymmetry magnitudes on average. Asymmetric storms are most frequently oriented toward the east, northeast, and north in JTWC and MTCSWA, whereas they are most frequently oriented toward the southeast, east, and northeast in JMA. The direction of the longest gale-force (storm force) wind radius in JTWC is statistically rotated 18° (32°) clockwise to that in JMA. Although the wind radii in JTWC are of higher quality than those in JMA when using MTCSWA as a baseline, there remains a need to provide a consistent and reliable wind radii estimating process among operational centers.
    publisherAmerican Meteorological Society
    titleWind Structure Discrepancies between Two Best Track Datasets for Western North Pacific Tropical Cyclones
    typeJournal Paper
    journal volume144
    journal issue12
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-16-0163.1
    journal fristpage4533
    journal lastpage4551
    treeMonthly Weather Review:;2016:;volume( 144 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian