YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Study on Rapid Intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of Simulation, Storm-Scale Evolution, and Environmental Contribution

    Source: Monthly Weather Review:;2016:;volume( 145 ):;issue: 003::page 877
    Author:
    Chen, Xiaomin
    ,
    Wang, Yuqing
    ,
    Zhao, Kun
    ,
    Wu, Dan
    DOI: 10.1175/MWR-D-16-0147.1
    Publisher: American Meteorological Society
    Abstract: yphoon Vicente (2012) underwent an extreme rapid intensification (RI) over the northern South China Sea just before its landfall in south China. The extreme RI, the sudden track deflection, and the inner- and outer-core structures of Vicente were reasonably reproduced in an Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model simulation. The evolutions of the axisymmetric inner-core radar reflectivity and the primary circulation of the simulated Vicente before its landfall were verified against the Doppler radar observations.Two intensification stages were identified: 1) the asymmetric intensification stage (i.e., RI onset), represented by a relatively slow intensification rate accompanied by a distinct eyewall contraction; and 2) the axisymmetric RI stage with very slow eyewall contraction. Results from a storm-scale tangential wind tendency budget indicated that the primary spinup mechanism during the first stage was the radial eddy momentum transport, which was beneficial to accelerate primary circulation inside the radius of maximum wind (RMW) and thus conducive to eyewall contraction. In contrast, the principal spinup mechanism during the second stage was mainly ascribed to the forced secondary circulation in response to diabatic heating in the eyewall and boundary layer friction, which efficiently transported the absolute angular momentum radially inward and vertically upward to increase the primary circulation in the eyewall region throughout the troposphere. Further analysis revealed that the interaction between the monsoon circulation and storm-scale vorticity anomalies played an important role in erecting the tilted vortex and spinning up the midtropospheric TC circulation during the first stage.
    • Download: (6.323Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Study on Rapid Intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of Simulation, Storm-Scale Evolution, and Environmental Contribution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230988
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorChen, Xiaomin
    contributor authorWang, Yuqing
    contributor authorZhao, Kun
    contributor authorWu, Dan
    date accessioned2017-06-09T17:34:09Z
    date available2017-06-09T17:34:09Z
    date copyright2017/03/01
    date issued2016
    identifier issn0027-0644
    identifier otherams-87331.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230988
    description abstractyphoon Vicente (2012) underwent an extreme rapid intensification (RI) over the northern South China Sea just before its landfall in south China. The extreme RI, the sudden track deflection, and the inner- and outer-core structures of Vicente were reasonably reproduced in an Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model simulation. The evolutions of the axisymmetric inner-core radar reflectivity and the primary circulation of the simulated Vicente before its landfall were verified against the Doppler radar observations.Two intensification stages were identified: 1) the asymmetric intensification stage (i.e., RI onset), represented by a relatively slow intensification rate accompanied by a distinct eyewall contraction; and 2) the axisymmetric RI stage with very slow eyewall contraction. Results from a storm-scale tangential wind tendency budget indicated that the primary spinup mechanism during the first stage was the radial eddy momentum transport, which was beneficial to accelerate primary circulation inside the radius of maximum wind (RMW) and thus conducive to eyewall contraction. In contrast, the principal spinup mechanism during the second stage was mainly ascribed to the forced secondary circulation in response to diabatic heating in the eyewall and boundary layer friction, which efficiently transported the absolute angular momentum radially inward and vertically upward to increase the primary circulation in the eyewall region throughout the troposphere. Further analysis revealed that the interaction between the monsoon circulation and storm-scale vorticity anomalies played an important role in erecting the tilted vortex and spinning up the midtropospheric TC circulation during the first stage.
    publisherAmerican Meteorological Society
    titleA Numerical Study on Rapid Intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of Simulation, Storm-Scale Evolution, and Environmental Contribution
    typeJournal Paper
    journal volume145
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-16-0147.1
    journal fristpage877
    journal lastpage898
    treeMonthly Weather Review:;2016:;volume( 145 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian