YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonhomogeneous Boosting for Predictor Selection in Ensemble Postprocessing

    Source: Monthly Weather Review:;2016:;volume( 145 ):;issue: 001::page 137
    Author:
    Messner, Jakob W.
    ,
    Mayr, Georg J.
    ,
    Zeileis, Achim
    DOI: 10.1175/MWR-D-16-0088.1
    Publisher: American Meteorological Society
    Abstract: onhomogeneous regression is often used to statistically postprocess ensemble forecasts. Usually only ensemble forecasts of the predictand variable are used as input, but other potentially useful information sources are ignored. Although it is straightforward to add further input variables, overfitting can easily deteriorate the forecast performance for increasing numbers of input variables. This paper proposes a boosting algorithm to estimate the regression coefficients, while automatically selecting the most relevant input variables by restricting the coefficients of less important variables to zero. A case study with ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) shows that this approach effectively selects important input variables to clearly improve minimum and maximum temperature predictions at five central European stations.
    • Download: (9.975Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonhomogeneous Boosting for Predictor Selection in Ensemble Postprocessing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230951
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMessner, Jakob W.
    contributor authorMayr, Georg J.
    contributor authorZeileis, Achim
    date accessioned2017-06-09T17:34:01Z
    date available2017-06-09T17:34:01Z
    date copyright2017/01/01
    date issued2016
    identifier issn0027-0644
    identifier otherams-87298.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230951
    description abstractonhomogeneous regression is often used to statistically postprocess ensemble forecasts. Usually only ensemble forecasts of the predictand variable are used as input, but other potentially useful information sources are ignored. Although it is straightforward to add further input variables, overfitting can easily deteriorate the forecast performance for increasing numbers of input variables. This paper proposes a boosting algorithm to estimate the regression coefficients, while automatically selecting the most relevant input variables by restricting the coefficients of less important variables to zero. A case study with ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) shows that this approach effectively selects important input variables to clearly improve minimum and maximum temperature predictions at five central European stations.
    publisherAmerican Meteorological Society
    titleNonhomogeneous Boosting for Predictor Selection in Ensemble Postprocessing
    typeJournal Paper
    journal volume145
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-16-0088.1
    journal fristpage137
    journal lastpage147
    treeMonthly Weather Review:;2016:;volume( 145 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian