YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Discrete Postprocessing of Total Cloud Cover Ensemble Forecasts

    Source: Monthly Weather Review:;2016:;volume( 144 ):;issue: 007::page 2565
    Author:
    Hemri, Stephan
    ,
    Haiden, Thomas
    ,
    Pappenberger, Florian
    DOI: 10.1175/MWR-D-15-0426.1
    Publisher: American Meteorological Society
    Abstract: his paper presents an approach to postprocess ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical postprocessing of ensemble predictions are tested: the first approach is based on multinomial logistic regression and the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on stationwise postprocessing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model.
    • Download: (1.279Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Discrete Postprocessing of Total Cloud Cover Ensemble Forecasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230883
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHemri, Stephan
    contributor authorHaiden, Thomas
    contributor authorPappenberger, Florian
    date accessioned2017-06-09T17:33:42Z
    date available2017-06-09T17:33:42Z
    date copyright2016/07/01
    date issued2016
    identifier issn0027-0644
    identifier otherams-87236.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230883
    description abstracthis paper presents an approach to postprocess ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical postprocessing of ensemble predictions are tested: the first approach is based on multinomial logistic regression and the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on stationwise postprocessing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model.
    publisherAmerican Meteorological Society
    titleDiscrete Postprocessing of Total Cloud Cover Ensemble Forecasts
    typeJournal Paper
    journal volume144
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-15-0426.1
    journal fristpage2565
    journal lastpage2577
    treeMonthly Weather Review:;2016:;volume( 144 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian