YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Investigation of the Goshen County, Wyoming, Tornadic Supercell of 5 June 2009 Using EnKF Assimilation of Mobile Mesonet and Radar Observations Collected during VORTEX2. Part II: Mesocyclone-Scale Processes Affecting Tornado Formation, Maintenance, and Decay

    Source: Monthly Weather Review:;2016:;volume( 144 ):;issue: 009::page 3441
    Author:
    Marquis, James
    ,
    Richardson, Yvette
    ,
    Markowski, Paul
    ,
    Wurman, Joshua
    ,
    Kosiba, Karen
    ,
    Robinson, Paul
    DOI: 10.1175/MWR-D-15-0411.1
    Publisher: American Meteorological Society
    Abstract: torm-scale and mesocyclone-scale processes occurring contemporaneously with a tornado in the Goshen County, Wyoming, supercell observed on 5 June 2009 during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are examined using ensemble analyses produced by assimilating mobile radar and in situ observations into a high-resolution convection-resolving model. This paper focuses on understanding the evolution of the vertical structure of the storm, the outflow buoyancy, and processes affecting the vertical vorticity and circulation within the mesocyclone that correspond to changes in observed tornado intensity.Tornadogenesis occurs when the low-level mesocyclone is least negatively buoyant relative to the environment, possesses its largest circulation, and is collocated with the largest azimuthally averaged convergence during the analysis period. The average buoyancy, circulation, and convergence within the near-surface mesocyclone (on spatial scales resolved by the model) all decrease as the tornado intensifies and matures. The tornado and its parent low-level mesocyclone both dissipate surrounded by a weakening rear-flank downdraft. The decreasing buoyancy of parcels within the low-level mesocyclone may partly be responsible for the weakening of the updraft surrounding the tornado and decoupling of the mid- and low-level circulation. Although the supply of horizontal vorticity generated in the forward flank of the storm increases throughout the life cycle of the tornado, it is presumably less easily tilted and stretched on the mesocyclone-scale during tornado maturity owing to the disruption of the low-level updraft/downdraft structure. Changes in radar-measured tornado intensity lag those of ensemble Kalman filter (EnKF) mesocyclone vorticity and circulation.
    • Download: (3.785Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Investigation of the Goshen County, Wyoming, Tornadic Supercell of 5 June 2009 Using EnKF Assimilation of Mobile Mesonet and Radar Observations Collected during VORTEX2. Part II: Mesocyclone-Scale Processes Affecting Tornado Formation, Maintenance, and Decay

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230874
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMarquis, James
    contributor authorRichardson, Yvette
    contributor authorMarkowski, Paul
    contributor authorWurman, Joshua
    contributor authorKosiba, Karen
    contributor authorRobinson, Paul
    date accessioned2017-06-09T17:33:41Z
    date available2017-06-09T17:33:41Z
    date copyright2016/09/01
    date issued2016
    identifier issn0027-0644
    identifier otherams-87228.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230874
    description abstracttorm-scale and mesocyclone-scale processes occurring contemporaneously with a tornado in the Goshen County, Wyoming, supercell observed on 5 June 2009 during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) are examined using ensemble analyses produced by assimilating mobile radar and in situ observations into a high-resolution convection-resolving model. This paper focuses on understanding the evolution of the vertical structure of the storm, the outflow buoyancy, and processes affecting the vertical vorticity and circulation within the mesocyclone that correspond to changes in observed tornado intensity.Tornadogenesis occurs when the low-level mesocyclone is least negatively buoyant relative to the environment, possesses its largest circulation, and is collocated with the largest azimuthally averaged convergence during the analysis period. The average buoyancy, circulation, and convergence within the near-surface mesocyclone (on spatial scales resolved by the model) all decrease as the tornado intensifies and matures. The tornado and its parent low-level mesocyclone both dissipate surrounded by a weakening rear-flank downdraft. The decreasing buoyancy of parcels within the low-level mesocyclone may partly be responsible for the weakening of the updraft surrounding the tornado and decoupling of the mid- and low-level circulation. Although the supply of horizontal vorticity generated in the forward flank of the storm increases throughout the life cycle of the tornado, it is presumably less easily tilted and stretched on the mesocyclone-scale during tornado maturity owing to the disruption of the low-level updraft/downdraft structure. Changes in radar-measured tornado intensity lag those of ensemble Kalman filter (EnKF) mesocyclone vorticity and circulation.
    publisherAmerican Meteorological Society
    titleAn Investigation of the Goshen County, Wyoming, Tornadic Supercell of 5 June 2009 Using EnKF Assimilation of Mobile Mesonet and Radar Observations Collected during VORTEX2. Part II: Mesocyclone-Scale Processes Affecting Tornado Formation, Maintenance, and Decay
    typeJournal Paper
    journal volume144
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-15-0411.1
    journal fristpage3441
    journal lastpage3463
    treeMonthly Weather Review:;2016:;volume( 144 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian