YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ensemble–Variational Integrated Localized Data Assimilation

    Source: Monthly Weather Review:;2016:;volume( 144 ):;issue: 010::page 3677
    Author:
    Auligné, Thomas
    ,
    Ménétrier, Benjamin
    ,
    Lorenc, Andrew C.
    ,
    Buehner, Mark
    DOI: 10.1175/MWR-D-15-0252.1
    Publisher: American Meteorological Society
    Abstract: ybrid variational?ensemble data assimilation (hybrid DA) is widely used in research and operational systems, and it is considered the current state of the art for the initialization of numerical weather prediction models. However, hybrid DA requires a separate ensemble DA to estimate the uncertainty in the deterministic variational DA, which can be suboptimal both technically and scientifically. A new framework called the ensemble?variational integrated localized (EVIL) data assimilation addresses this inconvenience by updating the ensemble analyses using information from the variational deterministic system. The goal of EVIL is to encompass and generalize existing ensemble Kalman filter methods in a variational framework. Particular attention is devoted to the affordability and efficiency of the algorithm in preparation for operational applications.
    • Download: (5.305Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ensemble–Variational Integrated Localized Data Assimilation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230779
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorAuligné, Thomas
    contributor authorMénétrier, Benjamin
    contributor authorLorenc, Andrew C.
    contributor authorBuehner, Mark
    date accessioned2017-06-09T17:33:15Z
    date available2017-06-09T17:33:15Z
    date copyright2016/10/01
    date issued2016
    identifier issn0027-0644
    identifier otherams-87142.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230779
    description abstractybrid variational?ensemble data assimilation (hybrid DA) is widely used in research and operational systems, and it is considered the current state of the art for the initialization of numerical weather prediction models. However, hybrid DA requires a separate ensemble DA to estimate the uncertainty in the deterministic variational DA, which can be suboptimal both technically and scientifically. A new framework called the ensemble?variational integrated localized (EVIL) data assimilation addresses this inconvenience by updating the ensemble analyses using information from the variational deterministic system. The goal of EVIL is to encompass and generalize existing ensemble Kalman filter methods in a variational framework. Particular attention is devoted to the affordability and efficiency of the algorithm in preparation for operational applications.
    publisherAmerican Meteorological Society
    titleEnsemble–Variational Integrated Localized Data Assimilation
    typeJournal Paper
    journal volume144
    journal issue10
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-15-0252.1
    journal fristpage3677
    journal lastpage3696
    treeMonthly Weather Review:;2016:;volume( 144 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian