YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assimilation of TRMM Multisatellite Precipitation Analysis with a Low-Resolution NCEP Global Forecast System

    Source: Monthly Weather Review:;2015:;volume( 144 ):;issue: 002::page 643
    Author:
    Lien, Guo-Yuan
    ,
    Miyoshi, Takemasa
    ,
    Kalnay, Eugenia
    DOI: 10.1175/MWR-D-15-0149.1
    Publisher: American Meteorological Society
    Abstract: urrent methods of assimilation of precipitation into numerical weather prediction models are able to make the model precipitation become similar to the observed precipitation during the assimilation, but the model forecasts tend to return to their original solution after a few hours. To facilitate the precipitation assimilation, a logarithm transformation has been used in several past studies. Lien et al. proposed instead to assimilate precipitation using the local ensemble transform Kalman filter (LETKF) with a Gaussian transformation technique and succeeded in improving the model forecasts in perfect-model observing system simulation experiments (OSSEs).In this study, the method of Lien et al. is tested within a more realistic configuration: the TRMM Multisatellite Precipitation Analysis (TMPA) data are assimilated into a low-resolution version of the NCEP Global Forecast System (GFS). With guidance from a statistical study comparing the GFS model background precipitation and the TMPA data, some modifications of the assimilation methods proposed in Lien et al. are made, including 1) applying separate Gaussian transformations to model and to observational precipitation based on their own cumulative distribution functions; 2) adopting a quality control criterion based on the correlation between the long-term model and observed precipitation data at the observation location; and 3) proposing a new method to define the transformation of zero precipitation that takes into account the zero precipitation probability in the background ensemble rather than the climatology. With these modifications, the assimilation of the TMPA precipitation data improves both the analysis and 5-day model forecasts when compared with a control experiment assimilating only rawinsonde data.
    • Download: (2.865Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assimilation of TRMM Multisatellite Precipitation Analysis with a Low-Resolution NCEP Global Forecast System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230755
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorLien, Guo-Yuan
    contributor authorMiyoshi, Takemasa
    contributor authorKalnay, Eugenia
    date accessioned2017-06-09T17:33:08Z
    date available2017-06-09T17:33:08Z
    date copyright2016/02/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-87121.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230755
    description abstracturrent methods of assimilation of precipitation into numerical weather prediction models are able to make the model precipitation become similar to the observed precipitation during the assimilation, but the model forecasts tend to return to their original solution after a few hours. To facilitate the precipitation assimilation, a logarithm transformation has been used in several past studies. Lien et al. proposed instead to assimilate precipitation using the local ensemble transform Kalman filter (LETKF) with a Gaussian transformation technique and succeeded in improving the model forecasts in perfect-model observing system simulation experiments (OSSEs).In this study, the method of Lien et al. is tested within a more realistic configuration: the TRMM Multisatellite Precipitation Analysis (TMPA) data are assimilated into a low-resolution version of the NCEP Global Forecast System (GFS). With guidance from a statistical study comparing the GFS model background precipitation and the TMPA data, some modifications of the assimilation methods proposed in Lien et al. are made, including 1) applying separate Gaussian transformations to model and to observational precipitation based on their own cumulative distribution functions; 2) adopting a quality control criterion based on the correlation between the long-term model and observed precipitation data at the observation location; and 3) proposing a new method to define the transformation of zero precipitation that takes into account the zero precipitation probability in the background ensemble rather than the climatology. With these modifications, the assimilation of the TMPA precipitation data improves both the analysis and 5-day model forecasts when compared with a control experiment assimilating only rawinsonde data.
    publisherAmerican Meteorological Society
    titleAssimilation of TRMM Multisatellite Precipitation Analysis with a Low-Resolution NCEP Global Forecast System
    typeJournal Paper
    journal volume144
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-15-0149.1
    journal fristpage643
    journal lastpage661
    treeMonthly Weather Review:;2015:;volume( 144 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian