YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mesoscale Vortex Development during Extreme Precipitation: Colorado, September 2013

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 012::page 4943
    Author:
    Morales, Annareli
    ,
    Schumacher, Russ S.
    ,
    Kreidenweis, Sonia M.
    DOI: 10.1175/MWR-D-15-0086.1
    Publisher: American Meteorological Society
    Abstract: n 11?12 September 2013, portions of northern Colorado experienced flash flooding as a result of high rain rates accumulating over 180 mm of rain in 6 h. From 0400 to 0700 UTC 12 September a mesovortex was observed traveling northwestward toward the city of Boulder, Colorado, with enhanced upslope flow on its north side and localized deep convection. Although the mesovortex was observed in an area common for lee vortex formation, namely that associated with the Denver Cyclone, it is shown via ARW model simulations that the mesovortex intensified through the release of latent heat, similar to the processes leading to mesoscale convective vortices, rather than by dry topographic-flow dynamics. High rates of cloud water condensation at relatively low altitudes led to a strong vertical gradient in latent heating, resulting in a near-surface positive potential vorticity anomaly. Reducing the contribution of cloud water condensation to latent heating by 50% resulted in no mesovortex development in the model and a substantial decrease in precipitation. On the other hand, removing the topographical forcing in the model did not inhibit the mesovortex formation, confirming the secondary role of topography. The mesovortex enhanced upslope winds and convection, and was thus a key feature in the generation of intense precipitation over Boulder. The ability to forecast the development of these mesovortices and their subsequent environmental and hydrological effects could be critical for decision-makers and the public, given their association with high rainfall rates.
    • Download: (10.78Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mesoscale Vortex Development during Extreme Precipitation: Colorado, September 2013

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230738
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMorales, Annareli
    contributor authorSchumacher, Russ S.
    contributor authorKreidenweis, Sonia M.
    date accessioned2017-06-09T17:33:03Z
    date available2017-06-09T17:33:03Z
    date copyright2015/12/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-87105.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230738
    description abstractn 11?12 September 2013, portions of northern Colorado experienced flash flooding as a result of high rain rates accumulating over 180 mm of rain in 6 h. From 0400 to 0700 UTC 12 September a mesovortex was observed traveling northwestward toward the city of Boulder, Colorado, with enhanced upslope flow on its north side and localized deep convection. Although the mesovortex was observed in an area common for lee vortex formation, namely that associated with the Denver Cyclone, it is shown via ARW model simulations that the mesovortex intensified through the release of latent heat, similar to the processes leading to mesoscale convective vortices, rather than by dry topographic-flow dynamics. High rates of cloud water condensation at relatively low altitudes led to a strong vertical gradient in latent heating, resulting in a near-surface positive potential vorticity anomaly. Reducing the contribution of cloud water condensation to latent heating by 50% resulted in no mesovortex development in the model and a substantial decrease in precipitation. On the other hand, removing the topographical forcing in the model did not inhibit the mesovortex formation, confirming the secondary role of topography. The mesovortex enhanced upslope winds and convection, and was thus a key feature in the generation of intense precipitation over Boulder. The ability to forecast the development of these mesovortices and their subsequent environmental and hydrological effects could be critical for decision-makers and the public, given their association with high rainfall rates.
    publisherAmerican Meteorological Society
    titleMesoscale Vortex Development during Extreme Precipitation: Colorado, September 2013
    typeJournal Paper
    journal volume143
    journal issue12
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-15-0086.1
    journal fristpage4943
    journal lastpage4962
    treeMonthly Weather Review:;2015:;volume( 143 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian