YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Convective Initiation near the Andes in Subtropical South America

    Source: Monthly Weather Review:;2016:;volume( 144 ):;issue: 006::page 2351
    Author:
    Rasmussen, K. L.
    ,
    Houze, R. A.
    DOI: 10.1175/MWR-D-15-0058.1
    Publisher: American Meteorological Society
    Abstract: atellite radar and radiometer data indicate that subtropical South America has some of the deepest and most extreme convective storms on Earth. This study uses the full 15-yr TRMM Precipitation Radar dataset in conjunction with high-resolution simulations from the Weather Research and Forecasting Model to better understand the physical factors that control the climatology of high-impact weather in subtropical South America. The occurrence of intense storms with an extreme horizontal dimension is generally associated with lee cyclogenesis and a strengthening South American low-level jet (SALLJ) in the La Plata basin. The orography of the Andes is critical, and model sensitivity calculations removing and/or reducing various topographic features indicate the orographic control on the initiation of convection and its upscale growth into mesoscale convective systems (MCSs). Reduced Andes experiments show more widespread convective initiation, weaker average storm intensity, and more rapid propagation of the MCS to the east (reminiscent of the MCS life cycle downstream of lower mountains such as the Rockies). With reduced Andes, lee cyclogenesis and SALLJ winds are weaker, while they are stronger in increased Andes runs. The presence of the Sierras de Córdoba (secondary mountain range east of the Andes in Argentina) focuses convective initiation and results in more intense storms in experiments with higher Andes. Average CAPE and CIN values for each terrain modification simulation show that reduced Andes runs had lower CIN and CAPE, while increased Andes runs had both stronger CAPE and CIN. From this research, a conceptual model for convective storm environments leading to convective initiation has been developed for subtropical South America.
    • Download: (8.839Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Convective Initiation near the Andes in Subtropical South America

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230725
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorRasmussen, K. L.
    contributor authorHouze, R. A.
    date accessioned2017-06-09T17:33:00Z
    date available2017-06-09T17:33:00Z
    date copyright2016/06/01
    date issued2016
    identifier issn0027-0644
    identifier otherams-87094.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230725
    description abstractatellite radar and radiometer data indicate that subtropical South America has some of the deepest and most extreme convective storms on Earth. This study uses the full 15-yr TRMM Precipitation Radar dataset in conjunction with high-resolution simulations from the Weather Research and Forecasting Model to better understand the physical factors that control the climatology of high-impact weather in subtropical South America. The occurrence of intense storms with an extreme horizontal dimension is generally associated with lee cyclogenesis and a strengthening South American low-level jet (SALLJ) in the La Plata basin. The orography of the Andes is critical, and model sensitivity calculations removing and/or reducing various topographic features indicate the orographic control on the initiation of convection and its upscale growth into mesoscale convective systems (MCSs). Reduced Andes experiments show more widespread convective initiation, weaker average storm intensity, and more rapid propagation of the MCS to the east (reminiscent of the MCS life cycle downstream of lower mountains such as the Rockies). With reduced Andes, lee cyclogenesis and SALLJ winds are weaker, while they are stronger in increased Andes runs. The presence of the Sierras de Córdoba (secondary mountain range east of the Andes in Argentina) focuses convective initiation and results in more intense storms in experiments with higher Andes. Average CAPE and CIN values for each terrain modification simulation show that reduced Andes runs had lower CIN and CAPE, while increased Andes runs had both stronger CAPE and CIN. From this research, a conceptual model for convective storm environments leading to convective initiation has been developed for subtropical South America.
    publisherAmerican Meteorological Society
    titleConvective Initiation near the Andes in Subtropical South America
    typeJournal Paper
    journal volume144
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-15-0058.1
    journal fristpage2351
    journal lastpage2374
    treeMonthly Weather Review:;2016:;volume( 144 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian