YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Applying a Neighborhood Fractions Sampling Approach as a Diagnostic Tool

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 011::page 4736
    Author:
    Nachamkin, Jason E.
    ,
    Schmidt, Jerome
    DOI: 10.1175/MWR-D-14-00411.1
    Publisher: American Meteorological Society
    Abstract: he fractions skill score (FSS) belongs to a class of spatial neighborhood techniques that measures forecast skill from samples of gridded forecasts and observations at increasing spatial scales. Each sample contains the fraction of the predicted and observed quantities that exist above a threshold value. Skill is gauged by the rate that the observed and predicted fractions converge with increasing scale. In this study, neighborhood sampling is applied to diagnose the performance of high-resolution (1.67 km) precipitation forecasts over central Florida. Reliability diagrams derived from the spatial fractions indicate that the FSS can be influenced by small, low-predictability events. Further tests indicate the FSS is subtly affected by samples from points on and near the grid boundaries. Inclusion of these points tends to reduce the magnitude and sensitivity of the FSS, especially at large scales. An attempt to mine data from the set of neighborhood fractions was moderately successful at obtaining descriptive information about the precipitation fields. The width of the distribution of the fractions at each scale provided information concerning forecast resolution and sharpness. The rate at which the distribution of the fractions converged toward the domain mean with increasing scale was found to be sensitive to the uniformity of coverage of precipitation through the domain. Generally, the 6-h forecasts possessed greater spatial skill than those at 12 h. High-FSS values at 12 h were mostly associated with evenly distributed precipitation patterns, while the 6-h forecasts also performed well for several nonuniform cases.
    • Download: (1.339Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Applying a Neighborhood Fractions Sampling Approach as a Diagnostic Tool

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230685
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorNachamkin, Jason E.
    contributor authorSchmidt, Jerome
    date accessioned2017-06-09T17:32:53Z
    date available2017-06-09T17:32:53Z
    date copyright2015/11/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-87058.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230685
    description abstracthe fractions skill score (FSS) belongs to a class of spatial neighborhood techniques that measures forecast skill from samples of gridded forecasts and observations at increasing spatial scales. Each sample contains the fraction of the predicted and observed quantities that exist above a threshold value. Skill is gauged by the rate that the observed and predicted fractions converge with increasing scale. In this study, neighborhood sampling is applied to diagnose the performance of high-resolution (1.67 km) precipitation forecasts over central Florida. Reliability diagrams derived from the spatial fractions indicate that the FSS can be influenced by small, low-predictability events. Further tests indicate the FSS is subtly affected by samples from points on and near the grid boundaries. Inclusion of these points tends to reduce the magnitude and sensitivity of the FSS, especially at large scales. An attempt to mine data from the set of neighborhood fractions was moderately successful at obtaining descriptive information about the precipitation fields. The width of the distribution of the fractions at each scale provided information concerning forecast resolution and sharpness. The rate at which the distribution of the fractions converged toward the domain mean with increasing scale was found to be sensitive to the uniformity of coverage of precipitation through the domain. Generally, the 6-h forecasts possessed greater spatial skill than those at 12 h. High-FSS values at 12 h were mostly associated with evenly distributed precipitation patterns, while the 6-h forecasts also performed well for several nonuniform cases.
    publisherAmerican Meteorological Society
    titleApplying a Neighborhood Fractions Sampling Approach as a Diagnostic Tool
    typeJournal Paper
    journal volume143
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00411.1
    journal fristpage4736
    journal lastpage4749
    treeMonthly Weather Review:;2015:;volume( 143 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian