YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Nonvariational Consistent Hybrid Ensemble Filter

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 012::page 5073
    Author:
    Bishop, Craig H.
    ,
    Huang, Bo
    ,
    Wang, Xuguang
    DOI: 10.1175/MWR-D-14-00391.1
    Publisher: American Meteorological Society
    Abstract: consistent hybrid ensemble filter (CHEF) for using hybrid forecast error covariance matrices that linearly combine aspects of both climatological and flow-dependent matrices within a nonvariational ensemble data assimilation scheme is described. The CHEF accommodates the ensemble data assimilation enhancements of (i) model space ensemble covariance localization for satellite data assimilation and (ii) Hodyss?s method for improving accuracy using ensemble skewness. Like the local ensemble transform Kalman filter (LETKF), the CHEF is computationally scalable because it updates local patches of the atmosphere independently of others. Like the sequential ensemble Kalman filter (EnKF), it serially assimilates batches of observations and uses perturbed observations to create ensembles of analyses. It differs from the deterministic (no perturbed observations) ensemble square root filter (ESRF) and the EnKF in that (i) its analysis correction is unaffected by the order in which observations are assimilated even when localization is required, (ii) it uses accurate high-rank solutions for the posterior error covariance matrix to serially assimilate observations, and (iii) it accommodates high-rank hybrid error covariance models. Experiments were performed to assess the effect on CHEF and ESRF analysis accuracy of these differences. In the case where both the CHEF and the ESRF used tuned localized ensemble covariances for the forecast error covariance model, the CHEF?s advantage over the ESRF increased with observational density. In the case where the CHEF used a hybrid error covariance model but the ESRF did not, the CHEF had a substantial advantage for all observational densities.
    • Download: (1.081Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Nonvariational Consistent Hybrid Ensemble Filter

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230670
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBishop, Craig H.
    contributor authorHuang, Bo
    contributor authorWang, Xuguang
    date accessioned2017-06-09T17:32:48Z
    date available2017-06-09T17:32:48Z
    date copyright2015/12/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-87044.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230670
    description abstractconsistent hybrid ensemble filter (CHEF) for using hybrid forecast error covariance matrices that linearly combine aspects of both climatological and flow-dependent matrices within a nonvariational ensemble data assimilation scheme is described. The CHEF accommodates the ensemble data assimilation enhancements of (i) model space ensemble covariance localization for satellite data assimilation and (ii) Hodyss?s method for improving accuracy using ensemble skewness. Like the local ensemble transform Kalman filter (LETKF), the CHEF is computationally scalable because it updates local patches of the atmosphere independently of others. Like the sequential ensemble Kalman filter (EnKF), it serially assimilates batches of observations and uses perturbed observations to create ensembles of analyses. It differs from the deterministic (no perturbed observations) ensemble square root filter (ESRF) and the EnKF in that (i) its analysis correction is unaffected by the order in which observations are assimilated even when localization is required, (ii) it uses accurate high-rank solutions for the posterior error covariance matrix to serially assimilate observations, and (iii) it accommodates high-rank hybrid error covariance models. Experiments were performed to assess the effect on CHEF and ESRF analysis accuracy of these differences. In the case where both the CHEF and the ESRF used tuned localized ensemble covariances for the forecast error covariance model, the CHEF?s advantage over the ESRF increased with observational density. In the case where the CHEF used a hybrid error covariance model but the ESRF did not, the CHEF had a substantial advantage for all observational densities.
    publisherAmerican Meteorological Society
    titleA Nonvariational Consistent Hybrid Ensemble Filter
    typeJournal Paper
    journal volume143
    journal issue12
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00391.1
    journal fristpage5073
    journal lastpage5090
    treeMonthly Weather Review:;2015:;volume( 143 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian