YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multivariate Ensemble Sensitivity with Localization

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 006::page 2013
    Author:
    Hacker, Joshua P.
    ,
    Lei, Lili
    DOI: 10.1175/MWR-D-14-00309.1
    Publisher: American Meteorological Society
    Abstract: nsemble sensitivities have proven a useful alternative to adjoint sensitivities for large-scale dynamics, but their performance in multiscale flows has not been thoroughly examined. When computing sensitivities, the analysis covariance is usually approximated with the corresponding diagonal matrix, leading to a simple univariate regression problem rather than a more general multivariate regression problem. Sensitivity estimates are affected by sampling error arising from a finite ensemble and can lead to an overestimated response to an analysis perturbation. When forecasts depend on many details of an analysis, it is reasonable to expect that the diagonal approximation is too severe. Because spurious covariances are more likely when correlations are weak, computing the sensitivity with a multivariate regression that retains the full analysis covariance may increase the need for sampling error mitigation. The purpose of this work is to clarify the effects of the diagonal approximation, and investigate the need for mitigating spurious covariances arising from sampling error. A two-scale model with realistic spatial covariances is the basis for experimentation. For most problems, an efficient matrix inversion is possible by finding a minimum-norm solution, and employing appropriate matrix factorization. A published hierarchical approach for estimating regression factors for tapering (localizing) covariances is used to measure the effects of sampling error. Compared to univariate regressions in the diagonal approximation, skill in predicting a nonlinear response from the linear sensitivities is superior when localized multivariate sensitivities are used, particularly when fast scales are present, model error is present, and the observing network is sparse.
    • Download: (1.462Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multivariate Ensemble Sensitivity with Localization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230619
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHacker, Joshua P.
    contributor authorLei, Lili
    date accessioned2017-06-09T17:32:38Z
    date available2017-06-09T17:32:38Z
    date copyright2015/06/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-87000.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230619
    description abstractnsemble sensitivities have proven a useful alternative to adjoint sensitivities for large-scale dynamics, but their performance in multiscale flows has not been thoroughly examined. When computing sensitivities, the analysis covariance is usually approximated with the corresponding diagonal matrix, leading to a simple univariate regression problem rather than a more general multivariate regression problem. Sensitivity estimates are affected by sampling error arising from a finite ensemble and can lead to an overestimated response to an analysis perturbation. When forecasts depend on many details of an analysis, it is reasonable to expect that the diagonal approximation is too severe. Because spurious covariances are more likely when correlations are weak, computing the sensitivity with a multivariate regression that retains the full analysis covariance may increase the need for sampling error mitigation. The purpose of this work is to clarify the effects of the diagonal approximation, and investigate the need for mitigating spurious covariances arising from sampling error. A two-scale model with realistic spatial covariances is the basis for experimentation. For most problems, an efficient matrix inversion is possible by finding a minimum-norm solution, and employing appropriate matrix factorization. A published hierarchical approach for estimating regression factors for tapering (localizing) covariances is used to measure the effects of sampling error. Compared to univariate regressions in the diagonal approximation, skill in predicting a nonlinear response from the linear sensitivities is superior when localized multivariate sensitivities are used, particularly when fast scales are present, model error is present, and the observing network is sparse.
    publisherAmerican Meteorological Society
    titleMultivariate Ensemble Sensitivity with Localization
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00309.1
    journal fristpage2013
    journal lastpage2027
    treeMonthly Weather Review:;2015:;volume( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian