YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part I: Storm- and Tornado-Scale Numerical Forecasts

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 006::page 2241
    Author:
    Dawson, Daniel T.
    ,
    Xue, Ming
    ,
    Milbrandt, Jason A.
    ,
    Shapiro, Alan
    DOI: 10.1175/MWR-D-14-00279.1
    Publisher: American Meteorological Society
    Abstract: umerical predictions of the 3 May 1999 Oklahoma City, Oklahoma, tornadic supercell are performed within a real-data framework utilizing telescoping nested grids of 3-km, 1-km, and 250-m horizontal spacing. Radar reflectivity and radial velocity from the Oklahoma City WSR-88D are assimilated using a cloud analysis procedure coupled with a cycled 3DVAR system to analyze storms on the 1-km grid for subsequent forecast periods. Single-, double-, and triple-moment configurations of a multimoment bulk microphysics scheme are used in several experiments on the 1-km and 250-m grids to assess the impact of varying the complexity of the microphysics scheme on the storm structure, behavior, and tornadic activity (on the 250-m grid). This appears to be the first study of its type to investigate single- versus multimoment microphysics within a real-data context.It is found that the triple-moment scheme overall performs the best, producing the smallest track errors for the mesocyclone on the 1-km grid, and stronger and longer-lived tornado-like vortices (TLVs) on the 250-m grid, closest to the observed tornado. In contrast, the single-moment scheme with the default Marshall?Palmer rain intercept parameter performs poorly, producing a cold pool that is too strong, and only weak and short-lived TLVs. The results in the context of differences in latent cooling from evaporation and melting between the schemes, as well as implications for numerical prediction of tornadoes, are discussed. More generally, the feedbacks to storm thermodynamics and dynamics from increasing the prognostic detail of the hydrometeor size distributions are found to be important for improving the simulation and prediction of tornadic thunderstorms.
    • Download: (4.611Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part I: Storm- and Tornado-Scale Numerical Forecasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230597
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorDawson, Daniel T.
    contributor authorXue, Ming
    contributor authorMilbrandt, Jason A.
    contributor authorShapiro, Alan
    date accessioned2017-06-09T17:32:34Z
    date available2017-06-09T17:32:34Z
    date copyright2015/06/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-86980.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230597
    description abstractumerical predictions of the 3 May 1999 Oklahoma City, Oklahoma, tornadic supercell are performed within a real-data framework utilizing telescoping nested grids of 3-km, 1-km, and 250-m horizontal spacing. Radar reflectivity and radial velocity from the Oklahoma City WSR-88D are assimilated using a cloud analysis procedure coupled with a cycled 3DVAR system to analyze storms on the 1-km grid for subsequent forecast periods. Single-, double-, and triple-moment configurations of a multimoment bulk microphysics scheme are used in several experiments on the 1-km and 250-m grids to assess the impact of varying the complexity of the microphysics scheme on the storm structure, behavior, and tornadic activity (on the 250-m grid). This appears to be the first study of its type to investigate single- versus multimoment microphysics within a real-data context.It is found that the triple-moment scheme overall performs the best, producing the smallest track errors for the mesocyclone on the 1-km grid, and stronger and longer-lived tornado-like vortices (TLVs) on the 250-m grid, closest to the observed tornado. In contrast, the single-moment scheme with the default Marshall?Palmer rain intercept parameter performs poorly, producing a cold pool that is too strong, and only weak and short-lived TLVs. The results in the context of differences in latent cooling from evaporation and melting between the schemes, as well as implications for numerical prediction of tornadoes, are discussed. More generally, the feedbacks to storm thermodynamics and dynamics from increasing the prognostic detail of the hydrometeor size distributions are found to be important for improving the simulation and prediction of tornadic thunderstorms.
    publisherAmerican Meteorological Society
    titleSensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part I: Storm- and Tornado-Scale Numerical Forecasts
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00279.1
    journal fristpage2241
    journal lastpage2265
    treeMonthly Weather Review:;2015:;volume( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian