YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Initialization Method for Idealized Channel Simulations

    Source: Monthly Weather Review:;2015:;volume( 143 ):;issue: 006::page 2043
    Author:
    Terpstra, Annick
    ,
    Spengler, Thomas
    DOI: 10.1175/MWR-D-14-00248.1
    Publisher: American Meteorological Society
    Abstract: dealized model simulations have long been established as valuable tools to gain insight into atmospheric phenomena by providing a simplified, easier to comprehend version of the complex atmospheric system. A specific subgroup of idealized simulations, such as baroclinic channel models, requires the initialization of the model with balanced atmospheric fields to investigate the evolution of an introduced perturbation. The quality of these simulations depends on the degree of balance of the initial state, as imbalances result in geostrophic and hydrostatic adjustment processes that potentially skew the results. In this paper, a general method to create geostrophically and hydrostatically balanced initial conditions is introduced. The major benefit of this method is the possibility to directly define a basic state wind field with the pertinent atmospheric fields being derived given appropriate boundary conditions. Application of the method is exemplified by constructing initial conditions for a baroclinic test case with WRF and analyzing a perturbed and unperturbed numerical simulation. The unperturbed simulation exhibits weak inertia?gravity wave activity and minimal adjustment of the initial state during a 5-day simulation, which confirms the high degree of initial balance provided by the initialization technique. In the perturbed simulation, baroclinic instability is initiated, resulting in a cyclogenesis event similar to previous idealized baroclinic channel simulations. The proposed method is compared with initial conditions formulated in a Boussinesq framework, illustrating the difference in imbalances and their effect on perturbation growth.
    • Download: (869.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Initialization Method for Idealized Channel Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4230578
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorTerpstra, Annick
    contributor authorSpengler, Thomas
    date accessioned2017-06-09T17:32:29Z
    date available2017-06-09T17:32:29Z
    date copyright2015/06/01
    date issued2015
    identifier issn0027-0644
    identifier otherams-86962.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230578
    description abstractdealized model simulations have long been established as valuable tools to gain insight into atmospheric phenomena by providing a simplified, easier to comprehend version of the complex atmospheric system. A specific subgroup of idealized simulations, such as baroclinic channel models, requires the initialization of the model with balanced atmospheric fields to investigate the evolution of an introduced perturbation. The quality of these simulations depends on the degree of balance of the initial state, as imbalances result in geostrophic and hydrostatic adjustment processes that potentially skew the results. In this paper, a general method to create geostrophically and hydrostatically balanced initial conditions is introduced. The major benefit of this method is the possibility to directly define a basic state wind field with the pertinent atmospheric fields being derived given appropriate boundary conditions. Application of the method is exemplified by constructing initial conditions for a baroclinic test case with WRF and analyzing a perturbed and unperturbed numerical simulation. The unperturbed simulation exhibits weak inertia?gravity wave activity and minimal adjustment of the initial state during a 5-day simulation, which confirms the high degree of initial balance provided by the initialization technique. In the perturbed simulation, baroclinic instability is initiated, resulting in a cyclogenesis event similar to previous idealized baroclinic channel simulations. The proposed method is compared with initial conditions formulated in a Boussinesq framework, illustrating the difference in imbalances and their effect on perturbation growth.
    publisherAmerican Meteorological Society
    titleAn Initialization Method for Idealized Channel Simulations
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/MWR-D-14-00248.1
    journal fristpage2043
    journal lastpage2051
    treeMonthly Weather Review:;2015:;volume( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian