Multiscale Structure and Evolution of Hurricane Earl (2010) during Rapid IntensificationSource: Monthly Weather Review:;2014:;volume( 143 ):;issue: 002::page 536DOI: 10.1175/MWR-D-14-00175.1Publisher: American Meteorological Society
Abstract: he structure and evolution of Hurricane Earl (2010) during its rapid intensification as sampled by aircraft is studied here. Rapid intensification occurs in two stages. During the early stage, covering ~24 h, Earl was a tropical storm experiencing moderate northeasterly shear with an asymmetric distribution of convection, and the symmetric structure was shallow, broad, and diffuse. The upper-level circulation center was significantly displaced from the lower-level circulation at the beginning of this stage. Deep, vigorous convection?termed convective bursts?was located on the east side of the storm and appeared to play a role in positioning the upper-level cyclonic circulation center above the low-level center. By the end of this stage the vortex was aligned and extended over a deep layer, and rapid intensification began. During the late stage, rapid intensification continued as Earl intensified ~20 m s?1 during the next 24 h. The vortex remained aligned in the presence of weaker vertical shear, although azimuthal asymmetries persisted that were characteristic of vortices in shear. Convective bursts concentrated near the radius of maximum winds, with the majority located inside the radius of maximum winds. Each of the two stages described here raises questions about the role of convective- and vortex-scale processes in rapid intensification. During the early stage, the focus is on the role of convective bursts and their associated mesoscale convective system on vortex alignment and the onset of rapid intensification. During the late stage, the focus is on the processes that explain the observed radial distribution of convective bursts that peak inside the radius of maximum winds.
|
Collections
Show full item record
contributor author | Rogers, Robert F. | |
contributor author | Reasor, Paul D. | |
contributor author | Zhang, Jun A. | |
date accessioned | 2017-06-09T17:32:19Z | |
date available | 2017-06-09T17:32:19Z | |
date copyright | 2015/02/01 | |
date issued | 2014 | |
identifier issn | 0027-0644 | |
identifier other | ams-86917.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4230528 | |
description abstract | he structure and evolution of Hurricane Earl (2010) during its rapid intensification as sampled by aircraft is studied here. Rapid intensification occurs in two stages. During the early stage, covering ~24 h, Earl was a tropical storm experiencing moderate northeasterly shear with an asymmetric distribution of convection, and the symmetric structure was shallow, broad, and diffuse. The upper-level circulation center was significantly displaced from the lower-level circulation at the beginning of this stage. Deep, vigorous convection?termed convective bursts?was located on the east side of the storm and appeared to play a role in positioning the upper-level cyclonic circulation center above the low-level center. By the end of this stage the vortex was aligned and extended over a deep layer, and rapid intensification began. During the late stage, rapid intensification continued as Earl intensified ~20 m s?1 during the next 24 h. The vortex remained aligned in the presence of weaker vertical shear, although azimuthal asymmetries persisted that were characteristic of vortices in shear. Convective bursts concentrated near the radius of maximum winds, with the majority located inside the radius of maximum winds. Each of the two stages described here raises questions about the role of convective- and vortex-scale processes in rapid intensification. During the early stage, the focus is on the role of convective bursts and their associated mesoscale convective system on vortex alignment and the onset of rapid intensification. During the late stage, the focus is on the processes that explain the observed radial distribution of convective bursts that peak inside the radius of maximum winds. | |
publisher | American Meteorological Society | |
title | Multiscale Structure and Evolution of Hurricane Earl (2010) during Rapid Intensification | |
type | Journal Paper | |
journal volume | 143 | |
journal issue | 2 | |
journal title | Monthly Weather Review | |
identifier doi | 10.1175/MWR-D-14-00175.1 | |
journal fristpage | 536 | |
journal lastpage | 562 | |
tree | Monthly Weather Review:;2014:;volume( 143 ):;issue: 002 | |
contenttype | Fulltext |